分享
分享赚钱 收藏 举报 版权申诉 / 9

类型专题28 二次函数与菱形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版) .docx

  • 上传人:a****
  • 文档编号:834260
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:9
  • 大小:642.92KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题28 二次函数与菱形存在问题-2022年中考数学之二次函数重点题型专题全国通用版原卷版 专题 28 二次 函数 菱形 存在 问题 2022 年中 数学 重点 题型 全国 通用版 原卷版
    资源描述:

    1、专题28 二次函数与菱形存在问题1(2021内蒙古鄂尔多斯中考真题)如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(1)求A,B,C三点的坐标;(2)连接,直线与该抛物线交于点E,与交于点D,连接当时,求线段的长;(3)点M在y轴上,点N在直线上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由2(2021湖南娄底中考真题)如图,在直角坐标系中,二次函数的图象与x轴相交于点和点,与y轴交于点C(1)求的值;(2)点为抛物线上的动点,过P作x轴的垂线交直线于点Q当时,求当P点到直线的距离最大时

    2、m的值;是否存在m,使得以点为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值3(2021重庆市中考三模)如图,在平面直角坐标系中,已知抛物线交x轴于点A、B,交y轴于点C(1)求线段BC的长;(2)点P为第三象限内抛物线上一点,连接BP,过点C作交x轴于点E,连接PE,求面积的最大值及此时点P的坐标;(3)在(2)的条件下,以y轴为对称轴,将抛物线对称,对称后点P的对应点为点,点M为对称后的抛物线对称轴上一点,N为平面内一点,是否存在以点A、M、N为顶点的四边形是菱形,若存在,直接写出点N的坐标,若不存在,则请说明理由4(2021重庆市中考一模)如图,在平面直角坐标系中,已知抛

    3、物线交x轴于点A、B,交y轴于点C(1)如图1,连接BC,过点A作y轴的平行线交直线BC于点E,求线段BE的长;(2)如图1,点P为第三象限内抛物线上一点,连接AP交BC于点D,连接连接BP,记BDP的面积为,ABD的面积为,当的值最大时,求出这个最大值和点P的坐标;(3)在(2)的条件下,将抛物线沿射线BC方向平移个单位,平移后的抛物线与原抛物线交于点G,点M为平移后的抛物线对称轴上一点,N为平面内一点,是否存在以点D、G、M、N为顶点的四边形是菱形,若存在,直接写出点N的坐标,若不存在,则请说明理由5(2021山西大同中考一模)综合与探究如图1,已知抛物线与x轴交于A,B两点(点A在点B的

    4、左侧),与y轴交于点C,作直线BC,点C关于x轴的对称点是点(1)求点的坐标和直线BC的表达式;(2)如图2,点M在抛物线的对称轴上,N为平面内一点,依次连接BM,NB,当四边形是菱形时,求点M坐标;(3)如图3,点P是抛物线第一象限内一动点,过P作x轴的平行线分别交直线BC和y轴于点Q和点E,连接交直线BC于点D,连接,PB,设点P的横坐标为m,的面积为,PBD的面积为,求的最大值6(2021山西万柏林中考一模)综合与探究:如图1,一次函数的图象分别与轴,轴交于,两点,二次函数的图象过,两点,且与轴交于另一点(1)求二次函数的解析式;(2)点是二次函数图象的一个动点,设点的横坐标为,若求的值

    5、;(3)如图2,过点作轴交抛物线于点点是直线上一动点,在坐标平面内是否存在点,使得以点,为顶点的四边形是菱形?若存在,请直接写出点的坐标:若不存在,请说明理由7(2021重庆一中中考一模)在平面直角坐标系中,抛物线yax2bxc(a0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,6),其中AB8,tanCAB3(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上一点,过点P作PD/AC交x轴于点D,交BC于点E,求BE的最大值及点P的坐标(3)将该抛物线沿射线CA方向平移2个单位长度得到抛物线y1,平移后的抛物线与原抛物线相交于点F,点G为抛物线y1的顶点,点M为直线FG上一

    6、点,点N为平面上一点在(2)中,当BE的值最大时,是否存在以P、E、M、N为顶点的四边形是菱形,若存在,直接写出点N的坐标;若不存在,请说明理由8(2021黑龙江讷河九年级期中)综合与探究如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,求CE+OE的最小值为_(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N当面积最大时的P点坐标为_;最大面积为_点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D、F、B、C为顶点的四边形

    7、是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由9(20212022重庆市九年级期中)如图1在平面直角坐标系中,抛物线与轴交于点、,与轴交于点(1)求的周长(2)已知点是直线下方抛物线上一动点,连接,求的面积的最大值(3)如图2,点为抛物线的顶点,对称轴交轴于点, M是直线上一点,在平面直角坐标系中是否存在一点,使得以点,为顶点的四边形为菱形?若存在,直接写出点的坐标,若不存在,说明理由10(20212022广东珠海市九年级期中)如图,已知抛物线yax2bxc的顶点D的坐标为(2,9),抛物线与坐标轴分别交于A、B、C三点,且B的坐标为(0,5),连接DB、DC,作直线BC(1)求抛

    8、物线的解析式;(2)P是x轴上的一点,过点P作x轴的垂线,与CD交于H,与CB交于G,若线段HG把CBD的面积分成相等的两部分,求P点的坐标;(3)若点M在直线CB上,点N在平面上,直线CB上是否存在点M,使以点C、点D、点M、点N为顶点的四边形为菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由11(2021湖北五峰九年级期末)如图,已知抛物线经过点和点,与轴交于点(1)求此抛物线的解析式;(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为用含的代数式表示线段的长连接,求的面积最大时点的坐标(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上

    9、一点,为轴上一点,是否存在这样的点和点,使得以点、为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,请说明理由12如图,对称轴x1的抛物线yax2+bx+c与x轴交于A(2,0),B两点,与y轴交于点C(0,2),(1)求抛物线和直线BC的函数表达式;(2)若点Q是直线BC上方的抛物线上的动点,求BQC的面积的最大值;(3)点P为抛物线上的一个动点,过点P作过点P作PDx轴于点D,交直线BC于点E若点P在第四象限内,当OD4PE时,PBE的面积;(4)在(3)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由13如图,在平面直角坐标系中,的边在轴上,以为顶点的抛物线经过点,交y轴于点,动点在对称轴上(1)求抛物线解析式;(2)若点从点出发,沿方向以1个单位/秒的速度匀速运动到点停止,设运动时间为秒,过点作交于点,过点平行于轴的直线交抛物线于点,连接,当为何值时,的面积最大?最大值是多少?(3)若点是平面内的任意一点,在轴上方是否存在点,使得以点为顶点的四边形是菱形,若存在,请直接写出符合条件的点坐标;若不存在,请说明理由

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题28 二次函数与菱形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版) .docx
    链接地址:https://www.ketangku.com/wenku/file-834260.html
    相关资源 更多
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案【实用】.docx人教版数学四年级上学期期末综合素养提升卷及参考答案【实用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案【培优】.docx人教版数学四年级上学期期末综合素养提升卷及参考答案【培优】.docx
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案1套.docx人教版数学四年级上学期期末综合素养提升卷及参考答案1套.docx
  • 人教版数学四年级上学期期末综合素养提升卷及免费答案.docx人教版数学四年级上学期期末综合素养提升卷及免费答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及一套答案.docx人教版数学四年级上学期期末综合素养提升卷及一套答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及1套完整答案.docx人教版数学四年级上学期期末综合素养提升卷及1套完整答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及1套参考答案.docx人教版数学四年级上学期期末综合素养提升卷及1套参考答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷参考答案.docx人教版数学四年级上学期期末综合素养提升卷参考答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷加下载答案.docx人教版数学四年级上学期期末综合素养提升卷加下载答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷下载.docx人教版数学四年级上学期期末综合素养提升卷下载.docx
  • 人教版数学四年级上学期期末综合素养提升卷【黄金题型】.docx人教版数学四年级上学期期末综合素养提升卷【黄金题型】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【重点】.docx人教版数学四年级上学期期末综合素养提升卷【重点】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【轻巧夺冠】.docx人教版数学四年级上学期期末综合素养提升卷【轻巧夺冠】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【能力提升】.docx人教版数学四年级上学期期末综合素养提升卷【能力提升】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【考点梳理】.docx人教版数学四年级上学期期末综合素养提升卷【考点梳理】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【网校专用】.docx人教版数学四年级上学期期末综合素养提升卷【网校专用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【综合题】.docx人教版数学四年级上学期期末综合素养提升卷【综合题】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【综合卷】.docx人教版数学四年级上学期期末综合素养提升卷【综合卷】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【精练】.docx人教版数学四年级上学期期末综合素养提升卷【精练】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【真题汇编】.docx人教版数学四年级上学期期末综合素养提升卷【真题汇编】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【最新】.docx人教版数学四年级上学期期末综合素养提升卷【最新】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【易错题】.docx人教版数学四年级上学期期末综合素养提升卷【易错题】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【必考】.docx人教版数学四年级上学期期末综合素养提升卷【必考】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【必刷】.docx人教版数学四年级上学期期末综合素养提升卷【必刷】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【实验班】.docx人教版数学四年级上学期期末综合素养提升卷【实验班】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【学生专用】.docx人教版数学四年级上学期期末综合素养提升卷【学生专用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【夺冠系列】.docx人教版数学四年级上学期期末综合素养提升卷【夺冠系列】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【夺冠】.docx人教版数学四年级上学期期末综合素养提升卷【夺冠】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【培优】.docx人教版数学四年级上学期期末综合素养提升卷【培优】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1