专题35 分式的规律性问题(解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题35 分式的规律性问题解析版 专题 35 分式 规律性 问题 解析
- 资源描述:
-
1、专题35 分式的规律性问题1若(不取0和),则等于()ABCD【答案】A【分析】先通过题目给的x2与x1 ,x3与x2, x4与x3,等关系分别用含有a的代数式表示x2,x3, x4,从而找到规律,进而得到结果【详解】解:,由此可知,20203=6731故选:A【点睛】本题考查了分式的化简,通过分式的化简找到周期规律是解决本题的关键2观察下列等式,根据其中的规律,猜想_(用含的代数式表示)【答案】【分析】根据题意分别用含x的式子表示出a1、a2、a3、a4,从而得出数列的循环周期为3,据此即可得解答【详解】解:,每3个数为一周期循环,故答案为:【点睛】本题主要考查数字的变化规律,根据已知数列的
2、计算公式得出其循环周期是解题的关键3观察下列各式:, 根据其中的规律可得_(用含n的式子表示)【答案】【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2-1,即第n项的分子是n2+(-1)n+1;依此即可求解【详解】解:由分析得,故答案为:【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案4一组按规律排列的式子:,(),则第个式子是_(为正整数).【答案】.【详解】试题分析:观察给出的一列数,发现这一列数的分
3、母a的指数分别是1、2、3、4,与这列数的项数相同,故第n个式子的分母是an;这一列数的分子b的指数分别是2、5、8、11,即第一个数是31-1=2,第二个数是32-1=5,第三个数是33-1=8,第四个数是34-1=11,每个数都比项数的3倍少1,故第n个式子的分子是b3n-1;特别要注意的是这列数字每一项的符号,它们的规律是奇数项为负,偶数项为正,故第n个式子的符号为(-1)n试题解析:第n个式子是.考点:规律型:数字的变化类5观察下列等式:第1个等式:x1=;第2个等式:x2=;第3个等式:x3=;第4个等式:x4=;则xl+x2+x3+x10=_【答案】【详解】因为x1=; x2=;x
4、3=; x4=;所以xl+x2+x3+x10=+=()=故答案为:【点睛】考点:分式的计算6观察下列等式:第个等式:;第个等式:;第个等式:;第个等式:;根据以上规律,解决下列问题:(1)写出第个等式:_;(2)计算结果等于_【答案】 【分析】(1)观察等式,分母为连续两个偶数的乘积,分子为2,等式的右边等于这两个连续偶数的倒数的差;(2)根据(1)的规律即可求解【详解】(1)由题意得:,故答案为:;(2)观察下列等式:第个等式:;第个等式:;第个等式:;第个等式:; 第个等式为:, 故答案为:【点睛】本题考查了数字类规律,找到规律是解题的关键三、解答题7观察下列各式:,(1)请再写出一个符合
5、上述各式规律的式子:_;(2)依照以上各式呈现的规律,写出它们的一般形式,并给出证明【答案】(1)(2),证明见解析【分析】(1)不难看出,两个分数的分子的和等于8,分母是相应的分子减去4,结果都等于2,从而可求解;(2)根据(1)的分析,写出一般形式,再对式子的左边进行运算,从而可求证(1)解:由题意得:两个分数的分子的和等于8,分母是相应的分子减去4,结果都等于2,则符合规律的式子有:,故答案为:(答案不唯一);(2)解:设第一个分数的分子为x,其一般形式为:,证明:左边=2=右边故原式成立【点睛】本题主要考查分式的规律性问题,解答的关键是由所给的等式分析清楚各数之间的关系8观察下列等式:
6、第1个等式:;第2个等式:;第3个等式:;第4个等式:;根据上述规律解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n个等式(用含n的式子表示,n是正整数),并证明【答案】(1)(2),证明见解析【分析】(1)根据前个等式的规律写出第个等式;(2)根据前个等式的规律写出第个等式,只需证明等式左边等于右边即可(1)解:;(2)解:猜想:证明如下:左边右边【点睛】本题考查了等式中的找规律问题,解决本题的关键是找出第项与项数之间的关系9观察下列等式:第1个等式:,第2个等式:,第3个等式:,按照以上规律,解决下列问题:(1)写出第4个等式:_;(2)写出你猜想的第n个等式:_,并给出证明
7、【答案】(1)(2),理由见解析【分析】(1)根据题意得:第1个等式:,第2个等式:,第3个等式:,第4个等式:,即可求解;(2)由(1)发现规律:第n个等式:,再根据分式的减法运算把左边化简,即可求解(1)解:(1)根据题意得:第1个等式:,即,第2个等式:,即,第3个等式:,即,第4个等式:,即,故答案为:;(2)解:由(1)发现规律:第n个等式:,理由如下:左边 =右边【点睛】本题主要考查了规律类题探究,分式加减运算,明确题意,准确得到规律是解题的关键10观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;第5个等式:;按上述规律,回答以下问题:(1)写出第6个等式:_
8、;(2)写出你猜想的第个等式:_(用含的等式表示),并证明【答案】(1)(2);证明见解析【分析】(1)依次观察每个等式,可以发现规律:,按照此规律即可求解;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可(1)解:第6个等式:;故答案为:(2)解:第个等式:;证明:右边左边,等式成立故答案为:【点睛】此题考查了数字的规律变化,解题的关键是通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题11观察下列各式:第1个等式:第2个等式:第3个等式:根据你发现的规律解答下列问题:(1)第4个等式为:_(2)写出你猜想的第n个等式:_(用
9、含n的等式表示),并证明【答案】(1)(2)【分析】(1)观察前几个等式中数字的变化,即可写出第4个等式;(2)结合(1)即可写出第个等式,然后计算证明即可(1)解:第4个等式为:,故答案为:(2)解:证明:右边左边,所以等式成立,故答案为:【点睛】本题考查了分式的规律探究,有理数的加减运算,解决本题的关键在于推导一般性规律12观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,按照以上规律,解决下列问题:(1)写出第5个等式:_;(2)写出你猜想的第n个等式:_(用含n的等式表示),并证明.【答案】(1);(2),证明见解析;【分析】(1)根据前4个等式得出第五个等式即可;
10、(2)通过观察减号后面的数字规律,再结合每个式子找到分母之间的关系,最后通过化简即可证明(1)解:通过观察可得:;(2)证明:左边=右边,【点睛】本题主要考查数字类变化规律,仔细观察每个式子中对应位置的数字,并找到相关系数关系是解题的关键13观察下列等式:11,22,33,(1)试写出第5个等式;(2)写出第n个等式,并证明其正确性【答案】(1);(2)n,证明见解析【分析】(1)根据已知的等式即可写出第5个等式;(2)根据已知的等式即可写出第n个等式,再根据分式的运算法则即可验证【详解】解:(1)11,22,33,第5个等式是:;(2)11,22,33,第n个等式是n,证明:左边右边,即n成
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
港务管理局货物承运登记单-运输合同.pdf
