专题8分式方程(共32题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国通用 专题 分式 方程 32 2021 年中 数学 真题分项 汇编 解析 全国 通用 01
- 资源描述:
-
1、2021年中考数学真题分项汇编【全国通用】(第01期)专题8分式方程(共32题)姓名:_ 班级:_ 得分:_一、单选题1(2021四川成都市中考真题)分式方程的解为( )ABCD【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解【详解】解:,解得:,检验:当时,是分式方程的解,故选:A【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验2(2021湖北恩施土家族苗族自治州中考真题)分式方程的解是( )ABCD【答案】D【分析】先去分母,然后再进行求解方程即可【详解】解:,经检验:是原方程的解;故选D【点睛】本题主要考查分式方程的解法,熟练
2、掌握分式方程的解法是解题的关键3(2021湖南怀化市中考真题)定义,则方程的解为( )ABCD【答案】B【分析】根据新定义,变形方程求解即可【详解】,变形为,解得 ,经检验 是原方程的根,故选B【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键4(2021湖北十堰市中考真题)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是( )ABCD【答案】B【分析】设现在每天生产x台,则原来可生产(x50)台根据现在生产400台机器的时间与原计划生产450台机器的
3、时间少1天,列出方程即可【详解】解:设现在每天生产x台,则原来可生产(x50)台依题意得:故选:B【点睛】此题主要考查了列分式方程应用,利用本题中“现在生产400台机器的时间与原计划生产450台机器的时间少1天”这一个条件,列出分式方程是解题关键5(2021山东临沂市中考真题)某工厂生产、两种型号的扫地机器人型机器人比型机器人每小时的清扫面积多50%;清扫所用的时间型机器人比型机器人多用40分钟 两种型号扫地机器人每小时分别清扫多少面积?若设型扫地机器人每小时清扫,根据题意可列方程为( )ABCD【答案】D【分析】根据清扫100m2所用的时间A型机器人比B型机器人多用40分钟列出方程即可【详解
4、】解:设A型扫地机器人每小时清扫xm2,由题意可得:,故选D【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系6(2021重庆中考真题)若关于x的一元一次不等式组的解集为,且关于y的分式方程的解是正整数,则所有满足条件的整数a的值之和是( )A5B8C12D15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到解得,再解分式方程得到,根据分式方程的解是正整数,得到,且是2的倍数,据此解得所有符合条件的整数a的值,最后求和【详解】解:解不等式得,解不等式得,不等式组的解集为:解分式方程得整理得, 则 分式方程的解是正整数,且是2的倍数,且是2的倍数,整数a的
5、值为-1, 1, 3, 5, 故选:【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键7(2021浙江嘉兴市中考真题)为迎接建党一百周年,某校举行歌唱比赛901班啦啦队买了两种价格的加油棒助威,其中荧光棒共花费40元,缤纷棒共花费30元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍若设荧光棒的单价为元( )ABCD【答案】B【分析】若设荧光棒的单价为元,根据等量关系“缤纷棒比荧光棒少20根”可列方程求解【详解】解:设荧光棒的单价为元,则缤纷棒单价是元,由题意可得:故选:B【点睛】考查了由实际问题抽象出分式方程,应用题中一般有三个量,
6、求一个量,明显的有一个量,一定是根据另一量来列等量关系的本题分析题意,找到合适的等量关系是解决问题的关键8(2021重庆中考真题)关于x的分式方程的解为正数,且使关于y的一元一次不等式组有解,则所有满足条件的整数a的值之和是( )ABCD【答案】B【分析】先将分式方程化为整式方程,得到它的解为,由它的解为正数,同时结合该分式方程有解即分母不为0,得到且,再由该一元一次不等式组有解,又可以得到,综合以上结论即可求出a的取值范围,即可得到其整数解,从而解决问题【详解】解:,两边同时乘以(),,由于该分式方程的解为正数,其中;,且;关于y的元一次不等式组有解,由得:;由得:;,综上可得:,且;满足条
7、件的所有整数a为:;它们的和为;故选B【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a的限制不等式,求出a的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题二、填空题9(2021北京中考真题)方程的解为_【答案】【分析】根据分式方程的解法可直接进行求解【详解】解:,经检验:是原方程的解故答案为:x=3【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键10(2021江苏宿迁市中考真题)方程的解是_【答案】,【分析】先把两边同时乘以,去分母后整
8、理为,进而即可求得方程的解【详解】解:,两边同时乘以,得,整理得:解得:,经检验,是原方程的解,故答案为:,【点睛】本题考查了分式方程和一元二次方程的解法,熟练掌握分式方程和一元二次方程的解法是解决本题的关键11(2021湖北荆州市中考真题)若关于的方程的解是正数,则的取值范围为_【答案】m-7且m-3【分析】先用含m的代数式表示x,再根据解为正数,列出关于m的不等式,求解即可【详解】解:由,得:且x2,关于的方程的解是正数,且,解得:m-7且m-3,故答案是:m-7且m-3【点睛】本题考查了分式方程的解以及解一元一次不等式组,求出方程的解是解题的关键12(2021湖南常德市中考真题)分式方程
9、的解为_【答案】【分析】直接利用通分,移项、去分母、求出后,再检验即可【详解】解:通分得:,移项得:,解得:,经检验,时,是分式方程的解,故答案是:【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验13(2021湖南衡阳市中考真题)“绿水青山就是金山银山”某地为美化环境,计划种植树木6000棵由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务则实际每天植树_棵【答案】500【分析】设原计划每天植树棵,则实际每天植树,根据工作时间工作总量工作效率,结合实际比原计划提前3天完成,准确列出关于的分式方程进行
10、求解即可【详解】解:设原计划每天植树棵,则实际每天植树,经检验,是原方程的解,实际每天植树棵,故答案是:500【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程14(2021四川达州市中考真题)若分式方程的解为整数,则整数_【答案】【分析】直接移项后通分合并同类项,化简、用来表示,再根据解为整数来确定的值【详解】解:,整理得:若分式方程的解为整数,为整数,当时,解得:,经检验:成立;当时,解得:,经检验:分母为0没有意义,故舍去;综上:,故答案是:【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用来表示,再根据解为整数来确定的值,易错点,容易忽略对根的检
11、验15(2021四川凉山彝族自治州中考真题)若关于x的分式方程的解为正数,则m的取值范围是_【答案】m-3且m-2【分析】先利用m表示出x的值,再由x为正数求出m的取值范围即可【详解】解:方程两边同时乘以x-1得,解得,x为正数,m+30,解得m-3x1,m+31,即m-2m的取值范围是m-3且m-2故答案为:m-3且m-2【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键三、解答题16(2021浙江中考真题)解分式方程:【答案】【分析】先将分式方程化成整式方程,然后求解,最后检验即可【详解】解: 经检验,是原方
12、程的解【点睛】本题主要考查了分式方程的解法,将将分式方程化成整式方程是解题的关键,检验是解答本题的易错点17(2021江苏连云港市中考真题)解方程:【答案】无解【分析】将分式去分母,然后再解方程即可【详解】解:去分母得:整理得,解得,经检验,是分式方程的增根,故此方程无解【点睛】本题考查的是解分式方程,要注意验根,熟悉相关运算法则是解题的关键18(2021四川自贡市中考真题)随着我国科技事业的不断发展,国产无人机大量进入快递行业现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运
13、送多少快件?【答案】A型机平均每小时运送70件,B型机平均每小时运送50件【分析】设A型机平均每小时运送x件,根据A型机比B型机平均每小时多运送20件,得出B型机平均每小时运送(x-20)件,再根据A型机运送700件所用时间与B型机运送500件所用时间相等,列出方程解之即可【详解】解:设A型机平均每小时运送x件,则B型机平均每小时运送(x-20)件,根据题意得:解这个方程得:x=70 经检验x=70是方程的解,x-20=50A型机平均每小时运送70件,B型机平均每小时运送50件【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键19(2021山东泰安市中
14、考真题)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?【答案】(1)30人;(2)39天【分析】(1)设当前参加生产的工人有人,根据每人每小时完成的工作量不变列出关于的方程,求解即可;(2)设
15、还需要生产天才能完成任务根据前面4天完成的工作量后面天完成的工作量760列出关于的方程,求解即可【详解】解:(1)设当前参加生产的工人有x人,依题意得:,解得:,经检验,是原方程的解,且符合题意答:当前参加生产的工人有30人(2)每人每小时的数量为(万剂)设还需要生产y天才能完成任务,依题意得:,解得:,(天)答:该厂共需要39天才能完成任务【点睛】本题考查分式方程的应用和一元一次方程的应用,分析题意,找到合适的数量关系是解决问题的关键20(2021云南中考真题)“30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措机场、车站、出租车、景区、手机短信,“30天无理由退
16、货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质刚刚过去的“五一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏某旅行社今年5月1日租用A、B两种客房一天,供当天使用下面是有关信息:今天用2000元租到A客房的数量与用1600元租到B客房的数量相等今天每间A客房的租金比每间B客房的租金多40元请根据上述信息,分别求今年5月1日该旅行社租用的A、B两种客房每间客房的租金【答案】租用的A种客房每间客房的租金为200元,B种客房每间客房的租金为160元【分析】设租用的B种客房每间客房的租金为x元,根据用2000元租到A
17、客房的数量与用1600元租到B客房的数量相等列出方程,解之即可【详解】解:设租用的B种客房每间客房的租金为x元,则A种客房每间客房的租金为x+40元,由题意可得:, 解得:,经检验:是原方程的解,160+40=200元,租用的A种客房每间客房的租金为200元,B种客房每间客房的租金为160元【点睛】本题考查了分式方程的实际应用,解题的关键是找准等量关系,列出方程21(2021江苏扬州市中考真题)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?【答案】
18、40万【分析】设原先每天生产x万剂疫苗,根据现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天可得方程,解之即可【详解】解:设原先每天生产x万剂疫苗,由题意可得:,解得:x=40,经检验:x=40是原方程的解,原先每天生产40万剂疫苗【点睛】此题主要考查了分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性22(2021江苏南京市中考真题)解方程【答案】【分析】先将方程两边同时乘以,化为整式方程后解整式方程再检验即可【详解】解:,检验:将代入中得,是该分式方程的解【点睛】本题考查了分式方程的解法,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-836150.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
