京改版八年级数学上册第十二章三角形定向练习试卷(解析版含答案).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 改版 八年 级数 上册 第十二 三角形 定向 练习 试卷 解析 答案
- 资源描述:
-
1、京改版八年级数学上册第十二章三角形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,两座建筑物,相距160km,小月从点沿BC走向点C,行走ts后她到达点,此时她仰望两座建筑物的顶点和,两条视
2、线的夹角正好为,且已知建筑物的高为,小月行走的速度为,则小月行走的时间的值为()A100B80C60D502、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1、2、33、如图,已知ABAC,ADAE,AB=AC,AD=AE,则BFD的度数是()A60B90C45D1204、如图,在中,以各边为斜边分别向外作等腰、等腰、等腰,将等腰和等腰按如图方式叠放到等腰中,已知,则长为()A2BC6D85、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在
3、内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D46、下列各组数据为三角形的三边,能构成直角三角形的是()A4,8,7B2,2,2C2,2,4D13,12,57、九章算术中记载:今有户不知高、广,竿不知长、短横之不出四尺,从之不出二尺,斜之适出问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为()ABCD8、如图:B=C=90,E是BC的中点,DE平分ADC,则下列说法正确的有几个()(1)AE平分DAB;(2)EBA
4、DCE; (3)AB+CD=AD;(4)AEDE(5)DE=AEA2个B3个C4个D59、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD10、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,
5、在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_2、如图,已知在ABD和ABC中,DABCAB,点A、B、E在同一条直线上,若使ABDABC,则还需添加的一个条件是_(只填一个即可)3、如图,则A+B+C+D+E的度数是_4、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边ABC和等边CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ则下列结论:ADBE;PQAE;APBQ;DEDP其中正确的有_(填序号)5、如图,CA=CB,CD=C
6、E,ACB=DCE=50,AD、BE交于点H,连接CH,则CHE=_三、解答题(5小题,每小题10分,共计50分)1、如图,求的各内角的度数2、如图,在ABC和DEB中,ACBE,C90,ABDE,点D为BC的中点, (1)求证:ABCDEB (2)连结AE,若BC4,直接写出AE的长3、如图,在中,D是边上的点,垂足分别为E,F,且求证:4、如图,在中,点,分别是、边上的点,与相交于点,求证:是等腰三角形5、如图,AD是ABC的角平分线,DE、DF分别是ABD和ACD的高(1)求证:AD垂直平分EF;(2)若AB+AC10,SABC15,求DE的长-参考答案-一、单选题1、A【解析】【分析】
7、首先证明A=DEC,然后可利用AAS判定ABEECD,进而可得EC=AB=60m,再求出BE的长,然后利用路程除以速度可得时间【详解】解:AED=90,AEB+DEC=90,ABE=90,A+AEB=90,A=DEC,在ABE和ECD中,ABEECD(AAS),EC=AB=60m,BC=160m,BE=100m,小华走的时间是1001=100(s),故选:A【考点】本题主要考查了全等三角形的应用,关键是正确判定ABEECD2、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义
8、.3、B【解析】【分析】先证BAECAD,得出B=C,再证CFB=BAC=90即可【详解】解:ABAC,ADAE,BAC=DAE=90,BAE=CAD,在BAE和CAD中,,BAECAD,B=C,BGA=CGF,CFB=BAC=90,BFD=90,故选:B【考点】本题考查了全等三角形的判定与性质,解题关键是确定全等三角形并通过8字型导角求出度数4、D【解析】【分析】设ADDBa,AFCFb,BECEc,由勾股定理可求a2+b2c2,由 ,可求b4,即可求解【详解】解:设ADDBa,AFCFb,BECEc,ABa,ACb,BCc,BAC90,AB2+AC2BC2,2a2+2b22c2,a2+b2
9、c2,将等腰RtADB和等腰RtAFC按如图方式叠放到等腰RtBEC,BGGHa,(a+c)(ca)16,c2a232,b232,b4,ACb8,故选:D【考点】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键5、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故
10、本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键6、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+7282,故不能构成直角三角形;B、22+2222,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符
11、合a2+b2=c2,则此三角形是直角三角形7、B【解析】【分析】根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长【详解】解:根据勾股定理可得:x2=(x-4)2+(x-2)2,故选:B【考点】本题考查了勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般8、B【解析】【分析】过点E作EFAD垂足为点F,证明DEFDEC(AAS);得出CEEF,DCDF,CEDFED,证明RtAFERtABE(HL);得出AFAB,FAEBAE,AEFAEB,即可得出答案【详解】解:如图,过点E作EFAD,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
专题8-口语交际与语文综合运用.ppt
