人教版九年级数学上册第二十三章旋转专项测评试题(含详细解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 第二十三 旋转 专项 测评 试题 详细 解析
- 资源描述:
-
1、人教版九年级数学上册第二十三章旋转专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中, 将绕点逆时针旋转得到,其中点与 点是对应点,且点在同一条直线上;则的长为()ABCD2、2020年7
2、月20日,宁津县人民政府印发津县城市生活垃圾分类制度实施方案的通知,全面推行生活垃圾分类下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是()ABCD3、如图,菱形对角线交点与坐标原点重合,点,则点的坐标为()ABCD4、如图,在ABC中,AB=AC,若M是BC边上任意一点,将ABM绕点A逆时针旋转得到ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()ABCD5、如图,在中,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A1.6B1.8C2D2.66、在下列图形中,既是轴对称图形,又是中心对称图形的是()A等边三
3、角形B直角三角形C正五边形D矩形7、下列图形中既是轴对称图形,也是中心对称图形的是()ABCD8、在平面直角坐标系中,点关于原点对称的点的坐标是()ABCD9、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90,得到,则点的坐标为()ABCD10、在平面直角坐标系中,点关于原点对称点在()A第一象限B第二象限C第三象限D第四象限第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则_2、如图,在中,将绕点逆时针旋转得到,连接,
4、则的长为_.3、如图,在平面直角坐标系中,点P(1,1),N(2,0),MNP和M1N1P1的顶点都在格点上,MNP与M1N1P1是关于某一点中心对称,则对称中心的坐标为_.4、如图,在平面直角坐标系中,由绕点顺时针旋转而得,则所在直线的解析式是_5、点A(1,-5)关于原点的对称点为点B,则点B的坐标为_三、解答题(5小题,每小题10分,共计50分)1、在RtABC中,ACB90,AC2,ABC30,点A关于直线BC的对称点为A,连接AB,点P为直线BC上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60,得到线段PD,连接AD,BD【问题发现】(1)如图1,当点D在直线BC上
5、时,线段BP与AD的数量关系为,DAB;【拓展探究】(2)如图2,当点P在BC的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;【问题解决】(3)当BDA30时,求线段AP的长度2、如图,将矩形ABCD绕点A顺时针旋转得到矩形AEFG,其中点B的对应点E恰好落在边CD上,连结BG交AE于点G,连结BE(1)求证:BE平分AEC;(2)求证:BH=HG3、如图,等腰RtABC中,A45,ABC90,点D在AC上,将ABD绕点B沿顺时针方向旋转90后,得到CBE(1)求DCE的度数;(2)若AB4,CD3AD,求DE的长4、如图,在平面直角坐标系中,点A的坐标(2,0)
6、,点C是y轴上的动点,当点C在y轴上移动时,始终保持是等边三角形(点A、C、P按逆时针方向排列);当点C移动到O点时,得到等边三角形AOB(此时点P与点B重合)初步探究(1)点B的坐标为 ;(2)点C在y轴上移动过程中,当等边三角形ACP的顶点P在第二象限时,连接BP,求证:;深入探究(3)当点C在y轴上移动时,点P也随之运动,探究点P在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;拓展应用(4)点C在y轴上移动过程中,当OP=OB时,点C的坐标为 5、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(1,0),B(4,1),C(2,2)(1)直接写出点B关于原点对称的
7、点B的坐标: ;(2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1;(3)画出ABC绕原点O逆时针旋转90后得到的A2B2C2-参考答案-一、单选题1、A【解析】【分析】根据旋转的性质说明ACC是等腰直角三角形,且CAC=90,理由勾股定理求出CC值,最后利用BC=CC-CB即可【详解】解:根据旋转的性质可知AC=AC,ACB=ACB=45,BC=BC=1,ACC是等腰直角三角形,且CAC=90,CC=4,BC=4-1=3故选:A【考点】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量2、B【解析】【分析】根
8、据轴对称图形和中心对称图形的概念去判断即可【详解】A、既不是轴对称图形也不是中心对称图形,故不满足题意;B、是轴对称图形也是中心对称图形,故满足题意;C、既不是轴对称图形也不是中心对称图形,故不满足题意;D、既不是轴对称图形也不是中心对称图形,故不满足题意;故选:B【考点】本题考查了轴对称图形和中心对称图形,关键是紧扣轴对称图形和中心对称图形的概念3、B【解析】【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可【详解】菱形是中心对称图形,且对称中心为原点,A、C坐标关于原点对称,C的坐标为,故选C【考点】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质
9、,关于原点对称点的坐标特点是解题的关键4、C【解析】【分析】根据旋转的性质,对每个选项逐一判断即可【详解】解:将ABM绕点A逆时针旋转得到ACN,ABMACN,AB=AC,AM=AN,AB不一定等于AN,故选项A不符合题意;ABMACN,ACN=B,而CAB不一定等于B,ACN不一定等于CAB,AB与CN不一定平行,故选项B不符合题意;ABMACN,BAM=CAN,ACN=B,BAC=MAN,AM=AN,AB=AC,ABC和AMN都是等腰三角形,且顶角相等,B=AMN,AMN=ACN,故选项C符合题意;AM=AN,而AC不一定平分MAN,AC与MN不一定垂直,故选项D不符合题意;故选:C【考点
10、】本题考查了旋转的性质,等腰三角形的判定与性质旋转变换是全等变换,利用旋转不变性是解题的关键5、A【解析】【分析】由将ABC绕点A按顺时针旋转一定角度得到ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由B=60,可证得ABD是等边三角形,继而可得BD=AB=2,则可求得答案【详解】由旋转的性质可知,为等边三角形,故选A【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB6、D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得【详解】解:A等边三角形是轴对称图形,不是中心对称图形,不符合题意;B直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;
11、C正五边形是轴对称图形,不是中心对称图形,不符合题意;D矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D【考点】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形7、B【解析】【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D
12、、不是轴对称图形,是中心对称图形,故此选项不符合题意故选:B【考点】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合8、C【解析】【分析】根据关于原点对称的点的坐标特点解答【详解】解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选:C【考点】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数9、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
