2021年七年级数学上册第4章直线与角阶段强化训练(有答案沪科版).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 七年 级数 上册 直线 阶段 强化 训练 答案 沪科版
- 资源描述:
-
1、专训一:常见立体图形的分类名师点金:立体图形就是各部分不都在同一平面内的几何图形,常见的立体图形有柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、台体(圆台、棱台)(以后将学)和球体(球)四类 按柱、锥、球分类1下列各选项中,都为柱体的是() A B C D2在如图所示的图形中,是圆柱的有_,是棱柱的有_(填序号)(第2题)3(1)把图中的立体图形分类,并说明分类标准;(2)图中与各有什么特征?有哪些相同点和不同点?(第3题) 按有无曲面分类4下列几何体中表面都是平面的是()A圆锥B圆柱C棱柱D球体5把一个三角尺绕任意一条边所在直线旋转一周得到一个几何体,则这个几何体_曲面(填“有”或“无”)6如图,
2、按组成的面来分类,至少有一个面是平面的图形有_,至少有一个面是曲面的图形有_(第6题)7将下列图形按有无曲面分类(第7题)专训二:立体图形的展开与折叠名师点金:一个立体图形的平面展开图的形状由展开的方式决定,不同的展开方式得到的平面展开图一般是不一样的,但无论怎样展开,平面展开图都应体现出原立体图形面的个数与形状 正方体的展开图1(中考德州)如图给定的是纸盒的外表面,下面能由它折叠而成的是()(第1题)2如图所示的图形都是由6个大小一样的正方形拼成的,哪些是正方体的平面展开图?(第2题) 长方体的展开图3如图是一个长方体的平面展开图,每个面上都标注了字母,请根据要求回答问题(1)如果面A是长方
3、体的上面,那么哪一面会在下面?(2)如果面F是长方体的后面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面A,从上面看是面E,那么哪一面会在前面?(第3题) 其他立体图形的展开图4如图是一些几何体的平面展开图,请写出这些几何体的名称(第4题) 立体图形展开图的相关计算问题5(中考青岛)如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n个几何体中,只有两个面涂色的小立方体共有_个(第5题)6如图所示这样形状的铁皮能围成一个长方体铁桶吗?如果能,它的体积有多大?(第6题)专训三:巧用线段中点的有关计算名师点金:利用线段的中点可以得
4、到线段相等或有倍数关系的等式来辅助计算,由相等的线段去判断中点时,点必须在线段上才能成立 线段中点问题类型一:与线段中点有关的计算1已知A,B,C三点在同一条直线上,若线段AB20 cm,线段BC8 cm,M,N分别是线段AB,BC的中点(1)求线段MN的长;(2)根据(1)中的计算过程和结果,设ABa,BCb,且ab,其他条件都不变,你能猜出MN的长度吗?(直接写出结果)类型二:与线段中点有关的说明题2画线段MN3 cm,在线段MN上取一点Q,使MQNQ;延长线段MN到点A,使ANMN;延长线段NM到点B,使BN3BM.(1)求线段BM的长;(2)求线段AN的长;(3)试说明点Q是哪些线段的
5、中点 线段分点问题类型一:与线段分点有关的计算(设参法)3如图,B,C两点把线段AD分成243的三部分,M是AD的中点,CD6 cm,求线段MC的长(第3题)类型二:线段分点与方程的结合4A,B两点在数轴上的位置如图,O为原点,现A,B两点分别以1个单位长度/秒,4个单位长度/秒的速度同时向左运动(1)几秒后,原点恰好在两点正中间?(2)几秒后,恰好有OAOB12?(第4题)专训四:线段上的动点问题名师点金:解决线段上的动点问题一般需注意:(1)找准点的各种可能的位置;(2)通常可用设元法,表示出移动变化后的线段的长(有可能是常数,那就是定值),再由题意列方程求解 线段上动点与中点问题的综合1
6、(1)如图,AB16,点D是AB上一动点,M,N分别是AD,DB的中点,能否求出线段MN的长?若能,求出其长,若不能,试说明理由(2)如图,AB16,点D运动到线段AB的延长线上,其他条件不变,能否求出线段MN的长?若能,求出其长,若不能,试说明理由(3)你能用一句话描述你发现的结论吗?(第1题) 线段上动点问题中的存在性问题2如图,已知数轴上两点A,B对应的数分别为2、6,O为原点,点P为数轴上的一动点,其对应的数为x.(第2题)(1)PA_;PB_(用含x的式子表示);(2)在数轴上是否存在这样的点P(不与A,B重合),使PAPB10?若存在,请求出x的值;若不存在,请说明理由(3)点P以
7、1个单位长度/s的速度从点O向右运动,同时点A以5个单位长度/s的速度向左运动,点B以20个单位长度/s的速度向右运动,在运动过程中,M,N分别是AP,OB的中点,问:的值是否发生变化?请说明理由 线段和差倍分关系中的动点问题3如图,线段AB24,动点P从A出发,以每秒2个单位长度的速度沿射线AB运动,M为AP的中点(1)出发多少秒后,PB2AM?(2)当P在线段AB上运动时,试说明2BMBP为定值(3)当P在AB延长线上运动时,N为BP的中点,有下列两个结论:MN长度不变;MAPN的值不变判断两个结论的正误(第3题)专训五:巧用角平分线的有关计算名师点金:角平分线的定义是进行角度计算常见的重
8、要依据,因此解这类题要从角平分线入手找角的数量关系,利用图形中相等的角的位置关系,结合角的和、差关系求解 角平分线的夹角问题(分类讨论思想)1已知AOB100,BOC60,OM平分AOB,ON平分BOC,求MON的度数 巧用角平分线解决折叠问题(折叠法)2如图,将一张长方形纸斜折过去,使顶点A落在A处,BC为折痕,然后把BE折过去,使之落在AB所在直线上,折痕为BD,那么两折痕BC与BD的夹角是多少度?(第2题) 巧用角平分线解决角的和、差、倍、分问题(方程思想)3如图,已知BOC2AOC,OD平分AOB,且COD19,求AOB的度数(第3题) 巧用角平分线解决角的推理证明问题(转化思想)4如
9、图,已知OD,OE,OF分别为AOB,AOC,BOC的平分线,DOE和COF有怎样的关系?说明理由(第4题)专训六:巧用角平分线的有关计算名师点金:时钟时针、分针转动角度的问题,要注意时针转动一大格,转过角度为周角的十二分之一,即30.每一个大格之间又分为五个小格,每个小格对应的角度是6.注意时针与分针转动角度的速度比是112,时针转动30,分针转动360;分针与秒针转动角度的速度比是160,分针转动6(一个小格),秒针转动360. 利用时间求角度类型一:按固定时间求角度1(1)从上午11时到下午1时30分,这期间时针转过了_;下午1:30,时针、分针的夹角是_(2)3点20分时,时针与分针的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
高中数学人教A版必修二全程复习课件 2.3.4 平面与平面垂直的性质.ppt
