分享
分享赚钱 收藏 举报 版权申诉 / 31

类型人教版九年级数学上册第二十四章圆同步练习试题(含详解).docx

  • 上传人:a****
  • 文档编号:869568
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:31
  • 大小:660.95KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二 十四 同步 练习 试题 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,MN为O的弦,N=52,则MON的度数为()A38B52C76D1042、已知扇形的半径为6,圆心角为则它

    2、的面积是()ABCD3、一个点到圆的最大距离为11 cm,最小距离为5 cm,则圆的半径为()A16cm或6 cmB3cm或8 cmC3 cmD8 cm4、有一个圆的半径为5,则该圆的弦长不可能是()A1B4C10D115、如图,五边形是O的内接正五边形,则的度数为()ABCD6、已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或1207、如图,、分别切于点、,点为优弧上一点,若,则的度数为()ABCD8、如图,AB是O的弦,等边三角形OCD的边CD与O相切于点P,连接OA,OB,OP,AD若COD+AOB180, AB6,则AD的

    3、长是()A6B3C2D9、如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56B62C68D7810、如图,在四边形ABCD中,则AB()A4B5CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某圆的周长是12.56米,那么它的半径是_,面积是_2、如图,在O中,是O的直径,点是点关于的对称点,是上的一动点,下列结论:;的最小值是10上述结论中正确的个数是_3、如图所示的网格由边长为个单位长度的小正方形组成,点、在直角坐标系中的坐标分别为,则内心的坐标为_4、已知的半径为,直线与相交,则圆心到直线距离的取

    4、值范围是_5、如图,将三角形AOC绕点O顺时针旋转120得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,C与x轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E(1)求圆心C的坐标与抛物线的解析式;(2)判断直线AE与C的位置关系,并说明理由;(3)若点M,N是直线y轴上的两个动点(点M在点N的上方),且MN1,请直接写出的四边形EAMN周长的最小值2、已知:如图,ABC中,ABAC,ABBC求作:线段BD,使得点D在线段AC上,且CBDBAC

    5、作法:以点A为圆心,AB长为半径画圆;以点C为圆心,BC长为半径画弧,交A于点P(不与点B重合);连接BP交AC于点D线段BD就是所求作的线段(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PCABAC,点C在A上点P在A上,CPBBAC( )(填推理的依据)BCPC,CBD ( )(填推理的依据)CBDBAC3、已知PA,PB分别与O相切于点A,B,APB80,C为O上一点(1)如图,求ACB的大小;(2)如图,AE为O的直径,AE与BC相交于点D若ABAD,求EAC的大小4、如图,在ABC 中,ABAC,BAC120,点 D 在边 BC 上,O 经过点

    6、A 和点 B且与边 BC 相交于点 D(1)判断 AC 与O 的位置关系,并说明理由(2)当 CD5 时,求O 的半径5、如图,已知MAN,按下列要求补全图形(要求利用没有刻度的直尺和圆规作图,不写作法,保留作图痕迹)在射线AN上取点O,以点O为圆心,以OA为半径作O分别交AM、AN于点C、B;在MAN的内部作射线AD交O于点D,使射线AD上的各点到MAN的两边距离相等,请根据所作图形解答下列问题;(1)连接OD,则OD与AM的位置关系是 ,理论依据是 ;(2)若点E在射线AM上,且DEAM于点E,请判断直线DE与O的位置关系;(3)已知O的直径AB6cm,当弧BD的长度为 cm时,四边形OA

    7、CD为菱形-参考答案-一、单选题1、C【解析】【分析】根据半径相等得到OM=ON,则M=N=52,然后根据三角形内角和定理计算MON的度数【详解】OM=ON,M=N=52,MON=180-252=76故选C【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)2、D【解析】【分析】已知扇形的半径和圆心角度数求扇形的面积,选择公式直接计算即可【详解】解:故选:D【考点】本题考查扇形面积公式的知识点,熟知扇形面积公式及适用条件是解题的关键3、B【解析】【分析】最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解【

    8、详解】当点P在圆内时,最近点的距离为5cm,最远点的距离为11cm,则直径是16cm,因而半径是8cm;当点P在圆外时,最近点的距离为5cm,最远点的距离为11cm,则直径是6cm,因而半径是3cm;故选B【考点】本题考查了点与圆的位置关系,利用线段的和差得出直径是解题关键,分类讨论,以防遗漏4、D【解析】【分析】根据圆的半径为5,可得到圆的最大弦长为10,即可求解【详解】半径为5,直径为10,最长弦长为10,则不可能是11故选:D【考点】本题主要考查了圆的基本性质,理解圆的直径是圆的最长的弦是解题的关键5、D【解析】【分析】先根据正五边形的内角和求出每个内角,再根据等边对等角得出ABE=AE

    9、B,然后利用三角形内角和求出ABE=即可【详解】解:五边形是O的内接正五边形,A=ABC=,AB=AE,ABE=AEB,ABE=,故选:D【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键6、D【解析】【分析】由图可知,OA=10,OD=5根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】解:由图可知,OA=10,OD=5,在RtOAD中,OA=10,OD=5,AD=,tan1=,1=60,同理可得2=60,AO

    10、B=1+2=60+60=120,C=60,E=180-60=120即弦AB所对的圆周角的度数是60或120,故选D【考点】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键7、C【解析】【分析】要求ACB的度数,只需根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB;再根据切线的性质以及四边形的内角和定理即可求解【详解】解:连接OA,OB,PA、PB分别切O于点A、B,OAAP,OBBP,PAO=PBO=90,AOB+APB=180,AOB=2ACB,ACB=APB,3ACB=180,ACB=60,故选:C【考点】此题考查了切

    11、线的性质,圆周角定理,以及四边形的内角和,熟练掌握切线的性质是解本题的关键8、C【解析】【分析】如图,过作于 过作于 先证明三点共线,再求解的半径, 证明四边形是矩形,再求解 从而利用勾股定理可得答案.【详解】解:如图,过作于 过作于 是的切线, 三点共线, 为等边三角形, 四边形是矩形, 故选:【考点】本题考查的是等腰三角形,等边三角形的性质,勾股定理的应用,矩形的判定与性质,切线的性质,锐角三角函数的应用,灵活应用以上知识是解题的关键.9、C【解析】【分析】由点I是ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180(BAC+ACB)=1802(180AIC),再利用圆内接

    12、四边形的外角等于内对角可得答案【详解】解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(180AIC)=68,又四边形ABCD内接于O,CDE=B=68,故选:C【考点】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质10、D【解析】【分析】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等于斜

    13、边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.二、填空题1、 2米 12.56平方米【解析】【分析】根据周长公式转化为,将C=12.56代入进行计算得到半径,继续利用面积公式,代入半径的值求出面积的结果【详解】因为C=2r,所以=2,所以r=2(米),因为S=r2 =3.1422=12.56(平方米)故答案为:2米12.56平方米【考点】考查圆的面积和周长与半径之间的关系,学生必须熟练掌握圆的面积和周长的求解公式,选择相应的公式进行计算,利

    14、用公式是解题的关键2、3【解析】【分析】根据点是点关于的对称点可知,进而可得;根据一条弧所对的圆周角等于圆心角的一半即可得结论;根据等弧对等角,可知只有当和重合时,;作点关于的对称点,连接,DF,此时的值最短,等于的长,然后证明DF是的直径即可得到结论【详解】解:,点是点关于的对称点,正确;,正确;的度数是60,的度数是120,只有当和重合时,只有和重合时,错误;作关于的对称点,连接,交于点,连接交于点,此时的值最短,等于的长连接,并且弧的度数都是60,是的直径,即,当点与点重合时,的值最小,最小值是10,正确故答案为:3【考点】本题考查了圆的综合知识,涉及圆周角、圆心角、弧、弦的关系、最短距

    15、离的确定等,掌握圆的基本性质并灵活运用是解题关键3、(2,3)【解析】【分析】根据A、B、C三点的坐标建立如图所示的坐标系,计算出ABC各边的长度,易得该三角形是直角三角形,设BC的关系式为:y=kx+b,求出BC与x轴的交点G的坐标,证出点A与点G关于BD对称,射线BD是ABC的平分线,三角形的内心在BD上,设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作MEAB,过点M作MFAC,且ME=MF=r,求出r的值,在BEM中,利用勾股定理求出BM的值,即可得到点M的坐标【详解】解:根据A、B、C三点的坐标建立如图所示的坐标系,根据题意可得:AB=,AC=,BC=,BAC=90

    16、,设BC的关系式为:y=kx+b,代入B,C,可得,解得:,BC:,当y=0时,x=3,即G(3,0),点A与点G关于BD对称,射线BD是ABC的平分线,设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作MEAB,过点M作MFAC,且ME=MF=r,BAC=90,四边形MEAF为正方形,SABC=,解得:,即AE=EM=,BE=,BM=,B(-3,3),M(2,3),故答案为:(2,3)【考点】本题考查三角形内心、平面直角坐标系、一次函数的解析式、勾股定理和正方形的判定与性质等相关知识点,把握内心是三角形内接圆的圆心这个概念,灵活运用各种知识求解即可4、【解析】【分析】根据直线

    17、AB和圆相交,则圆心到直线的距离小于圆的半径即可得问题答案【详解】O的半径为5,直线AB与O相交,圆心到直线AB的距离小于圆的半径,即0d5;故答案为:0d5【考点】本题考查了直线与圆的位置关系;熟记直线和圆的位置关系与数量之间的联系是解决问题的关键同时注意圆心到直线的距离应是非负数5、5【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积扇形OCD的面积,利用扇形的面积公式计算即可求解【详解】AOCBOD,阴影部分的面积=扇形OAB的面积扇形OCD的面积5故答案为5【考点】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积扇形OCD的面积是解

    18、题的关键三、解答题1、 (1)C(5,4),yx2x4;(2)AE是C的切线,理由见解析;(3)【解析】【分析】(1)如图1,连接CD,CB,过点C作于M设C的半径为r在RtBCM中,利用勾股定理求出半径,可得点C的坐标,根据函数的对称性,得,用待定系数法即可求解(2)结论:AE是OC的切线连接AC,CE,由抛物线的解析式推出点E的坐标,求出AC,AE,CE,利用勾股定理的逆定理证明即可解决问题(3)由四边形EAMN周长,可得当有最小值时,四边形周长有最小值,即当点M在线段上时,的最小值为,即可求解(1)解:(1)如图,连接CD,CB,过点C作CMAB于M设C的半径为r,与y轴相切于点D(0,

    19、4),CDOD,CDOCMODOM90,四边形ODCM是矩形,CMOD4,CDOMr,B(8,0),OB8,BM8r,在RtCMB中,BC2CM2BM2,r242(8r)2,解得r5,圆心C(5,4),抛物线的对称轴为x5,又点B(8,0),点A(2,0),则抛物线的表达式为ya(x2)(x8),将点D的坐标代入上式得:4a(02)(08),解得a,故抛物线的表达式为y(x2)(x8)x2x4(2)解:结论:AE是C的切线理由如下:连接AC,CE当x5时,y,顶点E(5,),AE,CE4,AC5,EC2,AE2AC2EC2AC2AE2,CAE90,CAAE,AE是C的切线(3)解:如图3,作点

    20、A关于y轴的对称点A(2,0),过点E作EFMN,且EFMN1,连接AM,AF,MF,点A与点A关于y轴对称,AMAM,EFMN,EFMN,四边形MNEF是平行四边形,MFNE,四边形EAMN周长AEAMMNNEAM1MFAMMF,当AMMF有最小值时,四边形EAMN周长有最小值,当点M在线段AF上时,AMMF的最小值为AF,EFMN,EFMN1,点F(5,),AF,四边形EAMN周长的最小值【考点】本题主要考查二次函数与圆的综合运用,数形结合能提高解题效率2、(1)见解析;(2)圆周角定理;,圆周角定理的推论【解析】【分析】(1)利用几何语言画出对应的几何图形;(2)先根据圆周角定理得到,再

    21、利用等腰三角形的性质得到,从而得到【详解】解:(1)如图,为所作;(2)证明:连接,如图,点在上点在上,(圆周角定理),(圆周角定理的推论)故答案为:圆周角定理;圆周角定理的推论【考点】本题考查了作图复杂作图、也考查了圆周角定理,解题的关键是掌握复杂作图的五种基本作图的基本方法,一般是结合了几何图形的性质和基本作图方法熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作3、 (1)ACB50(2)EAC20【解析】【分析】(1)连接OA、OB,根据切线性质和P=80,得到AOB=100,根据圆周角定理得到C=50;(2)连接CE,证明BCE=BAE=40,根据等腰三

    22、角形性质得到ABD=ADB=70,由三角形外角性质得到EAC=20(1)连接OA、OB,PA,PB是O的切线,OAPOBP90,AOB360909080100,由圆周角定理得,ACB AOB50;(2)连接CE,AE为O的直径,ACE90,ACB50,BCE905040,BAEBCE40,ABAD,ABDADB70,EACADBACB20【考点】本题考查了圆的切线,圆周角,等腰三角形,三角形外角,熟练掌握圆的切线性质,圆周角定理及推论,等腰三角形的性质,三角形外角性质,是解决问题的关键4、 (1)AC 与O相切,理由见解析(2)O 的半径为5【解析】【分析】(1)连接AO,根据等腰三角形的性质

    23、得到B=C=30,BAO=B=30,求得AOC=60,根据三角形的内角和得到OAC=180-60-30=90,于是得到AC是O的切线;(2)连接AD,推出AOD是等边三角形,得到AD=OD,ADO=60,求得DAC=ADO-C=30,得到AD=CD=5,于是得到结论(1)解: AC是O的切线,理由如下:连接AO,AB=AC,BAC=120,B=C=(180-BAC)=30,AO=BO,BAO=B=30,AOC=2B=60,OAC=180-AOC-C=180-60-30=90,AO是O的半径,AC是O的切线;(2)解:连接AD,AO=OD,AOD=60,AOD是等边三角形,AD=OD,ADO=6

    24、0,DAC=ADO-C=30,DAC=C=30,AD=CD=OD=5,D的半径为5【考点】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键5、(1)平行;内错角相等,两直线平行;(2)相切,理由见解析;(3)【解析】【分析】(1)根据角平分线的定义、圆的性质可得,根据内错角相等,两直线平行即可得证;(2)利用切线的定义即可判定;(3)根据菱形的性质、圆的半径相等可得是等边三角形,利用等边三角形的性质可得,可得,利用弧长公式即可求解【详解】解:补全图形如下:;(1),根据作图可知AD平分MAN,(内错角相等,两直线平行);(2)相切,理由如下:DEAM,直线DE与O相切;(3)四边形OACD为菱形,是等边三角形, 【考点】本题考查尺规作图、切线的判定与性质、等边三角形的判定与性质、弧长公式等内容,掌握上述基本性质定理是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十四章圆同步练习试题(含详解).docx
    链接地址:https://www.ketangku.com/wenku/file-869568.html
    相关资源 更多
  • 人教版二年级数学上册期末模拟试卷带答案(满分必刷).docx人教版二年级数学上册期末模拟试卷带答案(满分必刷).docx
  • 人教版二年级数学上册期末模拟试卷带答案(培优b卷).docx人教版二年级数学上册期末模拟试卷带答案(培优b卷).docx
  • 人教版二年级数学上册期末模拟试卷带答案(a卷).docx人教版二年级数学上册期末模拟试卷带答案(a卷).docx
  • 人教版二年级数学上册期末模拟试卷带答案解析.docx人教版二年级数学上册期末模拟试卷带答案解析.docx
  • 人教版二年级数学上册期末模拟试卷带答案下载.docx人教版二年级数学上册期末模拟试卷带答案下载.docx
  • 人教版二年级数学上册期末模拟试卷带答案.docx人教版二年级数学上册期末模拟试卷带答案.docx
  • 人教版二年级数学上册期末模拟试卷完美版.docx人教版二年级数学上册期末模拟试卷完美版.docx
  • 人教版二年级数学上册期末模拟试卷完整版.docx人教版二年级数学上册期末模拟试卷完整版.docx
  • 人教版二年级数学上册期末模拟试卷完整.docx人教版二年级数学上册期末模拟试卷完整.docx
  • 人教版二年级数学上册期末模拟试卷学生专用.docx人教版二年级数学上册期末模拟试卷学生专用.docx
  • 人教版二年级数学上册期末模拟试卷含解析答案.docx人教版二年级数学上册期末模拟试卷含解析答案.docx
  • 人教版二年级数学上册期末模拟试卷含精品答案.docx人教版二年级数学上册期末模拟试卷含精品答案.docx
  • 人教版二年级数学上册期末模拟试卷含答案(黄金题型).docx人教版二年级数学上册期末模拟试卷含答案(黄金题型).docx
  • 人教版二年级数学上册期末模拟试卷含答案(预热题).docx人教版二年级数学上册期末模拟试卷含答案(预热题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(达标题).docx人教版二年级数学上册期末模拟试卷含答案(达标题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(轻巧夺冠).docx人教版二年级数学上册期末模拟试卷含答案(轻巧夺冠).docx
  • 人教版二年级数学上册期末模拟试卷含答案(能力提升).docx人教版二年级数学上册期末模拟试卷含答案(能力提升).docx
  • 人教版二年级数学上册期末模拟试卷含答案(综合题).docx人教版二年级数学上册期末模拟试卷含答案(综合题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(综合卷).docx人教版二年级数学上册期末模拟试卷含答案(综合卷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(精练).docx人教版二年级数学上册期末模拟试卷含答案(精练).docx
  • 人教版二年级数学上册期末模拟试卷含答案(突破训练).docx人教版二年级数学上册期末模拟试卷含答案(突破训练).docx
  • 人教版二年级数学上册期末模拟试卷含答案(研优卷).docx人教版二年级数学上册期末模拟试卷含答案(研优卷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(满分必刷).docx人教版二年级数学上册期末模拟试卷含答案(满分必刷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(模拟题).docx人教版二年级数学上册期末模拟试卷含答案(模拟题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(最新).docx人教版二年级数学上册期末模拟试卷含答案(最新).docx
  • 人教版二年级数学上册期末模拟试卷含答案(新).docx人教版二年级数学上册期末模拟试卷含答案(新).docx
  • 人教版二年级数学上册期末模拟试卷含答案(巩固).docx人教版二年级数学上册期末模拟试卷含答案(巩固).docx
  • 人教版二年级数学上册期末模拟试卷含答案(完整版).docx人教版二年级数学上册期末模拟试卷含答案(完整版).docx
  • 人教版二年级数学上册期末模拟试卷含答案(夺分金卷).docx人教版二年级数学上册期末模拟试卷含答案(夺分金卷).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1