分享
分享赚钱 收藏 举报 版权申诉 / 23

类型人教版八年级数学上册第十二章全等三角形专项攻克试题(详解).docx

  • 上传人:a****
  • 文档编号:877343
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:23
  • 大小:573.04KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 八年 级数 上册 第十二 全等 三角形 专项 攻克 试题 详解
    资源描述:

    1、八年级数学上册第十二章全等三角形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列选项中表示两个全等图形的是()A形状相同的两个图形B能够完全重合的两个图形C面积相等的两个图形D周长相等的两个图

    2、形2、如图,在和中,则()A30B40C50D603、下列说法正确的是()A形状相同的两个三角形全等B面积相等的两个三角形全等C完全重合的两个三角形全等D所有的等边三角形全等4、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D45、作的平分线时,以O为圆心,某一长度为半径作弧,与OA,OB分别相交于C,D,然后分别以C,D为圆心,适当的长度为半径作弧使两弧在的内部相交于一点,则这个适当的长度(

    3、)A大于B等于C小于D以上都不对6、如图是作的作图痕迹,则此作图的已知条件是()A已知两边及夹角B已知三边C已知两角及夹边D已知两边及一边对角7、如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使ABECDF,则添加的条件不能是()AAE=CFBBE=FDCBF=DED1=28、如图,ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将ABC分为三个三角形,则SABO:SBCO:SCAO等于()A1:1:1B1:2:3C2:3:4D3:4:59、如图,ABC与DEF是全等三角形,则图中的相等线段有()A1B2C3D410、如图,已知,则的长为()A7B

    4、3.5C3D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,AB=AC,点D在BC上(不与点B,C重合)只需添加一个条件即可证明ABDACD,这个条件可以是_(写出一个即可)2、如图,若,则到的距离为_3、如图,是的角平分线,于, 的面积是,则_4、如图所示,中,直线l经过点A,过点B作于点E,过点C作于点F若,则_5、如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=_三、解答题(5小题,每小题10分,共计50分)1、在中,直线经过点C,且于D,于E,(1)当直线绕点C旋转到图1的位置时,显然有:(不必证明);(2)当直线绕点C旋转

    5、到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问、具有怎样的等量关系?请直接写出这个等量关系2、如图,在等腰三角形ABC中,A=90,AB=AC=6,D是BC边的中点,点E在线段AB上从B向A运动,同时点F在线段AC上从点A向C运动,速度都是1个单位/秒,时间是t秒(0t6),连接DE、DF、EF(1)请判断EDF形状,并证明你的结论(2)以A、E、D、F四点组成的四边形面积是否发生变化?若不变,求出这个值;若变化,用含t的式子表示3、小明的学习过程中,对教材中的一个有趣问题做如下探究:(1)【习题回顾】已知:如图1,在中,是角平分线,是高,相交于点求证:;(2)【变式思

    6、考】如图2,在中,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,若,求和的度数;(3)【探究延伸】如图3,在中,在上存在一点,使得,角平分线交于点的外角的平分线所在直线与的延长线交于点若,求的度数4、如图,在ABC中,ABAC,D是BC的中点,E,F分别是AB,AC上的点,且AEAF.求证:DEDF.5、如图,已知,垂足分别为A,D,求证:12-参考答案-一、单选题1、B【解析】【分析】利用全等图形的定义分析即可【详解】A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全等图形,故此选项正确;C、面积相等的两个图形,不一定是

    7、全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;故选B【考点】此题主要考查了全等图形,正确把握全等图形的定义是解题关键2、D【解析】【分析】由题意可证,有,由三角形内角和定理得,计算求解即可【详解】解:ABC和ADC均为直角三角形在和中故选D【考点】本题考查了三角形全等,三角形的内角和定理解题的关键在于找出角度的数量关系3、C【解析】【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案【详解】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、

    8、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C【考点】此题主要考查了全等图形,关键是掌握全等形的概念4、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点

    9、】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键5、A【解析】【分析】根据作已知角的角平分线的方法即可判断【详解】因为分别以C,D为圆心画弧时,要保证两弧在的内部交于一点,所以半径应大于,故选:A【考点】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)6、C【解析】【分析】观察的作图痕迹,可得此作图的条件.【详解】解:观察的作图痕迹,可得此作图的已知条件为:,及线段AB,故已知条件为:两角及夹边,

    10、故选C.【考点】本题主要考查三角形作图及三角形全等的相关知识.7、A【解析】【分析】利用平行四边形的性质以及全等三角形的判定分别得出即可【详解】解:A、若添加条件:AE=CF,因为ABD=CDB,不是两边的夹角,所以不能证明ABECDF,所以错误,符合题意,B、若添加条件:BE=FD,可以利用SAS证明ABECDF,所以正确,不符合题意;C、若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明ABECDF,所以正确,不符合题意;D、若添加条件:1=2,可以利用ASA证明ABECDF,所以正确,不符合题意;故选:A【考点】本题考查了平行四边形的性质、全等三角形的判定,解题的关键是掌握三

    11、角形的判定定理8、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,故选:C【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键9、D【解析】【分析】全等三角形的对应边相等,据此可得出AB=DE,AC=DF,BC=EF;再根据BC-EC=EF-EC,可得出一组线段相等,据此找出组数,问题可解.【详解】ABCDEF,AB=DE,AC=DF,BC=EF,BC-EC=EF-EC,即BE=CF.故共有四组相等线段.故选D.【考点】本题主要考查全等三角形的性质,全等三角形的对应

    12、边相等.10、C【解析】【分析】利用全等三角形的性质求解即可【详解】解:ABCDAE,AC=DE=5,AE=BC=2,CE=AC-AE=3,故选C【考点】本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键二、填空题1、BAD=CAD(或BD=CD)【解析】【分析】证明ABDACD,已经具备 根据选择的判定三角形全等的判定方法可得答案【详解】解: 要使 则可以添加:BAD=CAD,此时利用边角边判定:或可以添加: 此时利用边边边判定:故答案为:BAD=CAD或()【考点】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键2、4【解析】【分析】过P点作PE

    13、OB于E,根据角平分线的性质定理可得PE=PD,即可求解【详解】解:如图,过P点作PEOB于E,PEOB,PE=PD=4,即P到OB的距离是4,故答案为:4【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质定理是解题的关键3、2cm【解析】【分析】过点D作,垂足为点F,根据BD是ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其底边长之比,得BDC与BDA的面积之比,再求出BDA的面积,进而求出DE【详解】解:如图,过点D作,垂足为点F,BD是ABC的角平分线,DE=DF,的面积是,即,DE=2cm故答案为:2cm【考点】本题考查了三角形的问题,掌握角平分线的性质、等高的三

    14、角形的面积之比等于其底边长之比是解题的关键4、7【解析】【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:BEl,CFl,AEB=CFA=90EAB+EBA=90又BAC=90,EAB+CAF=90EBA=CAF在AEB和CFA中AEB=CFA,EBA=CAF,AB=AC,AEBCFAAE=CF,BE=AFAE+AF=BE+CFEF=BE+CF,;故答案为:7【考点】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等5、6【解析】【分析】由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全

    15、等则重合的性质求解即可【详解】解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=40.5+41=6故答案为:6【考点】考查了全等图形的性质,本题利用了全等形图形一定重合的性质求解,做题的关键是找准相互重合的对应边三、解答题1、(1)见解析;(2)见解析;(3)DE=BE-AD【解析】【分析】(1)由于ABC中,ACB=90,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E,由此即可证明ADCCEB,然后利用全等三角形的性质即可解决问题;(2)由于ABC中,ACB=90,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E,由此仍然可以证明ADCCEB,然后利用全等三

    16、角形的性质也可以解决问题;(3)当直线MN绕点C旋转到图(3)的位置时,仍然ADCCEB,然后利用全等三角形的性质可以得到DE=BE-AD【详解】解:(1)ABC中,ACB=90,ACD+BCE=90,又直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90ACD+DAC=90,BCE=DAC,在ADC和CEB中,ADCCEB(AAS),CD=BE,CE=AD,DE=CD+CE=AD+BE;(2)ABC中,ACB=90,直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90,ACD+BCE=BCE+CBE=90,而AC=BC,ADCCEB,CD=BE,CE=AD,D

    17、E=CE-CD=AD-BE;(3)如图3,ABC中,ACB=90,直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90,ACD+BCE=BCE+CBE=90,ACD=CBE,AC=BC,ADCCEB,CD=BE,CE=AD,DE=CD-CE=BE-AD;DE、AD、BE之间的关系为DE=BE-AD【考点】此题需要考查了全等三角形的判定与性质,也利用了直角三角形的性质,是一个探究性题目,对于学生的能力要求比较高2、(1)EDF为等腰直角三角形,证明见解析;(2)四边形AEDF面积不变,9【解析】【分析】(1)连接AD,利用等腰直角三角形的性质根据SAS证明BDEADF,即可得到结

    18、论;(2)根据(1)得到SBDE=SADF,推出S四边形AEDF=SADF+SADE=SABD=SABC,根据公式计算即可得到答案.【详解】解:(1)EDF为等腰直角三角形,理由如下:连接AD,AB=AC,BAC=90,点D是BC中点,AD=BD=CD=BC,AD平分BAC,B=C=BAD=CAD=45,点E、F速度都是1个单位秒,时间是t秒,BE=AF,又B=DAF=45,AD=BD,BDEADF(SAS),DE=DF,BDE=ADFBDE+ADE=90,ADF+ADE=90,EDF=90,EDF为等腰直角三角形;(2)四边形AEDF面积不变,理由:由(1)可知,BDEADF,SBDE=SA

    19、DF,S四边形AEDF=SADF+SADE=SABD=SABC,S四边形AEDF=ACAB=9.【考点】此题考查等腰直角三角形的性质,等腰三角形三线合一的性质,全等三角形的判定及性质.3、 (1)见解析;(2)25,25;(3)55【解析】【分析】(1)由余角的性质可得BACD,由角平分线的性质和外角的性质可得结论;(2)由三角形内角和定理可求GAF130,由角平分线的性质可求GAF65,由余角的性质可求解;(3)由平角的性质和角平分线的性质可求EAN90,由外角的性质可求解(1)证明:ACB90,CD是高,B+CAB90,ACD+CAB90,BACD,AE是角平分线,CAFDAF,CFECA

    20、F+ACDCEFDAF+B,CEFCFE;(2)解:B40,ACB90,GABB+ACB40+90130,AF为BAG的角平分线,GAFDAF13065,CD为AB边上的高,ADFACE90,CFE90GAF906525,又CAEGAF65,ACB90,CEF90CAE906525;(3)证明:C、A、G三点共线,AE、AN为角平分线,EAN90,又GANCAM,M+CEF90,CEFEAB+B,CFEEAC+ACD,ACDB,CEFCFE,M+CFE90CFE90M903555【考点】本题考查了三角形的外角性质,三角形的内角和定理,余角的性质等知识,灵活运用这些性质解决问题是解题的关键4、见

    21、解析【解析】【分析】首先连接AD,由AB=AC,D是BC的中点,根据三线合一的性质,可得EADFAD ,又由SAS,可判定AEDAFD ,继而证得DEDF 【详解】如图,连结ADABAC,D是BC的中点,EADFAD在AED和AFD中,AE=AF,EADFAD,AD=AD,AEDAFD(SAS),DEDF【考点】本题考查了等腰三角形的性质及全等三角形的判定与性质;利用等腰三角形三线合一的性质是解答本题的关键5、见解析【解析】【分析】根据HL证明RtABC与RtDCB全等,再利用全等三角形的性质证明即可【详解】证明:,AD=90在RtABC和RtDCB中, RtABCRtDCB(HL)12【考点】此题考查全等三角形的判定和性质,关键是根据HL证明RtABC与RtDCB全等

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版八年级数学上册第十二章全等三角形专项攻克试题(详解).docx
    链接地址:https://www.ketangku.com/wenku/file-877343.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1