分享
分享赚钱 收藏 举报 版权申诉 / 24

类型基础强化北师大版八年级数学上册第一章勾股定理综合测试试题(详解).docx

  • 上传人:a****
  • 文档编号:959348
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:24
  • 大小:473.37KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基础 强化 北师大 八年 级数 上册 第一章 勾股定理 综合测试 试题 详解
    资源描述:

    1、北师大版八年级数学上册第一章勾股定理综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点,在直线的同侧,到的距离,到的距离,已知,是直线上的一个动点,记的最小值为,的最大值为,则的值为()A1

    2、60B150C140D1302、如图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形的两直角边分别是a、b,且,大正方形的面积是9,则小正方形的面积是()A3B4C5D63、如图,在中,平分交于D点,E,F分别是,上的动点,则的最小值为()ABC3D4、在ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A10B8C6或10D8或105、在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A4B5C6D76、在自习课上,小芳同学将一张长方形

    3、纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形若AB3cm,则阴影部分的面积为()A1cm2B2cm2Ccm2Dcm27、我国古代数学著作九章算术中有这样一个问题:“今有方池一丈,葭生其中央,出水一 尺,引葭赴岸,适与岸齐水深、葭长各几何? ”其大意是:如图,有一个水池,水面是 一个边长为 10 尺 (丈、尺是长度单位,1 丈10 尺) 的正方形,在水池正中央有一根芦苇, 它高出水面 1 尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水 的深度与这根芦苇的长度分别是多少?若设这跟芦苇的长度为 x 尺,根据题意,所列方程

    4、正 确的是()A102(x1)2x2B102(x1)2 (x1)2C52(x1)2x2D52(x1)2 (x1)28、在直角三角形中,若勾为3,股为4,则弦为()A5B6C7D89、下面图形能够验证勾股定理的有()个A4个B3个C2个D1个10、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于点E、F,则DF的长为_2、如图,圆柱形无盖玻璃容器,高18cm

    5、,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度为_cm(容器壁厚度忽略不计)3、如图,矩形ABCD中,AD6,AB8点E为边DC上的一个动点,ADE与ADE关于直线AE对称,当CDE为直角三角形时,DE的长为_4、把一根长12厘米的木棒,从一端起顺次截下3厘米和5厘米的两段,用得到的三根木棒首尾依次相接,摆成的三角形形状是_5、九章算术中记载着这样一个问题:已知甲、乙两人同时从同一地点出发,甲的速度为7步/分,乙的速度为3步/分,乙一直向东走,甲先向南走10步,后又斜向北偏东方向

    6、走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?解:如图,设甲乙两人出发后x分钟相遇根据勾股定理可列得方程为_三、解答题(5小题,每小题10分,共计50分)1、如图,有一架秋千,当他静止时,踏板离地的垂直高度,将他往前推送(水平距离)时,秋千的踏板离地的垂直高度,秋千的绳索始终拉得很直,求绳索的长度2、我国古代的数学名著九章算术中记载“今有竹高一丈八,末折抵地,去本6尺.问:折者高几何?”译文:一根竹子,原高一丈八,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部6尺远问:折处离地还有多高的竹子?(1丈=10尺)3、一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米(1)这个梯

    7、子的顶端距地面有多高?(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?4、已知a,b,c为ABC的三边,且满足a2c2b2c2a4b4,试判定ABC的形状5、如图,在44的正方形网格中,每个小正方形的边长均为1(1)请在所给网格中画一个边长分别为,的三角形;(2)此三角形的面积是 -参考答案-一、单选题1、A【解析】【分析】作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在根据勾股定理求出线段的长,即为PA+PB的最小值,延长AB交MN于点,此时,由三角形三边关系可知,故当点P运动到时最大,过点B作由勾股定理求出AB的长就是的最大值,代入

    8、计算即可得【详解】解:如图所示,作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在中,根据勾股定理得,即PA+PB的最小值是;如图所示,延长AB交MN于点,当点P运动到点时,最大,过点B作,则, ,在中,根据勾股定理得,即,故选A【考点】本题考查了最短线路问题和勾股定理,解题的关键是熟知两点之间线段最短及三角形的三边关系2、A【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知(a+b)2=15,大正方形的面积为9,可以得出直角三角形的面积,进而求出答案【详解】解:(a+b)2=15,a2+2ab+b2=15,大正方形的面积

    9、为:a2+b2=9,2ab=159=6,即ab=3,直角三角形的面积为:,小正方形的面积为:,故选:A【考点】此题主要考查了完全平方公式及勾股定理的应用,熟练应用完全平方公式及勾股定理是解题关键3、D【解析】【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度【详解】在AB上取一点G,使AGAF在RtABC中,ACB90,AC3,BC4AB=5,CADBAD,AEAE,AEFAEG(SAS)FEGE,要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CHAB于H点,则CH的长即为CE+EG的最小值,此时,C

    10、H=,即:CE+EF的最小值为,故选:D【考点】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键4、C【解析】【详解】分两种情况:在图中,由勾股定理,得;BCBDCD8210.在图中,由勾股定理,得;BCBDCD826.故选C.5、A【解析】【详解】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A【考点】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和这里,边的平方的几何意义就是以该边为边的正方形的面积6、D【解析】【分析】由菱形的性质得到FCOECO,进而证明ECO

    11、ECBFCO30,2BECE,利用勾股定理得出BC,再解得菱形的面积为2 ,最后由阴影部分的面积 S菱形AECF解题【详解】解:四边形AECF是菱形,AB3,假设BEx,则AE3x,CE3x,四边形AECF是菱形,FCOECO,ECOECB,ECOECBFCO30,2BECE,CE2x,2x3x,解得:x1,CE2,利用勾股定理得出:BC2+BE2EC2,BC,又AEABBE312,则菱形的面积是:AEBC2 阴影部分的面积 S菱形AECF cm2故选:D【考点】本题考查菱形的性质、勾股定理、含30直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键7、C【解析】【分析】设这跟芦苇的长度

    12、为 x 尺,根据勾股定理,即可求解【详解】解:设这跟芦苇的长度为 x 尺,根据题意得:52(x1)2 x2故选:C【考点】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键8、A【解析】【分析】直接根据勾股定理求解即可【详解】解:在直角三角形中,勾为3,股为4,弦为,故选A【考点】本题考查了勾股定理,熟练掌握勾股定理是解题的关键9、A【解析】【分析】分别计算图形的面积进行证明即可【详解】解:A、由可得,故该项的图形能够验证勾股定理;B、由可得,故该项的图形能够验证勾股定理;C、由可得,故该项的图形能够验证勾股定理;D、由可得,故该项的图形能够验证勾股定理;故选:A【考点】此

    13、题考查了图形与勾股定理的推导,熟记勾股定理的计算公式及各种图形面积的计算方法是解题的关键10、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故选D【考点】本题考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答二、填空题1、【解析】【分析】根据折叠的性质可得,从而得出相应角相等,再根据角之间的关系得出,从而得出为等腰直角三角形,再根据勾股定理求出的长度,利用三角形的面积公式求出的长度,再求出、的长度,最后求出的长度【详

    14、解】解:边AC沿CE翻折,使点A落在AB上的点D处,边BC沿CF翻折,使点B落在CD的延长线上的点处,为等腰直角三角形,故答案为:【考点】本题主要考查了图形的翻折变化,勾股定理的运用,等腰直角三角形的判定,根据折叠的性质求得相应的角是解答本题的关键2、34【解析】【分析】首先展开圆柱的侧面,即是矩形,接下来根据两点之间线段最短,可知CF的长即为所求;然后结合已知条件求出DF与CD的长,再利用勾股定理进行计算即可.【详解】如图为圆柱形玻璃容器的侧面展开图,线段CF是蜘蛛由C到F的最短路程.根据题意,可知DF=18-1-1=16(cm),CD(cm),(cm),即蜘蛛所走的最短路线的长度是34cm

    15、.故答案为34.【考点】此题是有关最短路径的问题,关键在于把立体图形展开成平面图形,找出最短路径;3、3或6【解析】【分析】分两种情况分别求解,(1)当CED90时,如图(1),根据轴对称的性质得AEDAED45,得DEAD6;(2)当EDA90时,如图(2),根据轴对称的性质得ADED,ADAD,DEDE,得A、D、C在同一直线上,根据勾股定理得AC10,设DEDEx,则ECCDDE8x,根据勾股定理得,DE2DC2EC2,代入相关的值,计算即可【详解】解:当CED90时,如图(1),CED90,根据轴对称的性质得AEDAED9045,D90,ADE是等腰直角三角形,DEAD6;(2)当ED

    16、A90时,如图(2),根据轴对称的性质得ADED90,ADAD,DEDE,CDE为直角三角形,即CDE90,ADECDE180,A、D、C在同一直线上,根据勾股定理得,CD1064,设DEDEx,则ECCDDE8x,在RtDEC中,DE2DC2EC2,即x216(8x)2,解得x3,即DE3;综上所述:DE的长为3或6;故答案为:3或6【考点】本题考查了矩形的性质、勾股定理、轴对称的性质,熟练掌握矩形的性质、勾股定理、轴对称的性质的综合应用,分情况讨论,作出图形是解题关键4、直角三角形【解析】【分析】首先计算出第三条铁丝的长度,再利用勾股定理的逆定理可证明摆成的三角形是直角三角形【详解】解:1

    17、2-3-5=4(cm),32+42=52,这三条铁丝摆成的三角形是直角三角形,故答案为:直角三角形【考点】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形5、【解析】【分析】设甲、乙二人出发后相遇的时间为x ,然后利用勾股定理列出方程即可【详解】解:设经 x秒二人在C处相遇,这时乙共行 AC =3x,甲共行AB +BC =7x,AB =10, BC =7x -10,又 A =90,BC2= AC2 + AB2,(7x -10)2=(3x)2+102,故答案是:(7x -10)2= (3x)2+102【考点】本题考查了勾股定理

    18、的应用,解题的关键是从实际问题中抽象出直角三角形三、解答题1、【解析】【分析】设秋千的绳索长为,则,利用勾股定理得,再解方程即可得出答案【详解】解:设秋千的绳索长为,则,在中,即,解得,答:绳索的长度是【考点】此题主要考查了勾股定理的应用,关键是正确理解题意,表示出AC、AB的长,掌握直角三角形中两直角边的平方和等于斜边的平方2、尺【解析】【分析】设原处还有尺高的竹子,由题意得到折后竹子竖直高度+斜倒部分的长度=18尺,再运用勾股定理列方程即可求解【详解】解:设折处离地还有尺高的竹子,如图,在中,AC=x尺,则AB=一丈八- AC =(18-x)尺由勾股定理得,所以,解得:答:折处离地还有尺高

    19、的竹子【考点】此题考查勾股定理解决实际问题此题中的直角三角形只知道一直角边,另两边未知往往要列方程求解3、(1)12米;(2)7米【解析】【分析】(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;(2)由题意得CO= 5米,然后根据勾股定理可得求解【详解】解:(1)由题意得,AB=CD=13米,OB=5米,在Rt,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:这个梯子的顶端距地面有12米高;(2)由题意得,AC=7米,由(1)得AO=12米,CO=AO-AC=12-7=5米,在Rt,由勾股定理得:OD2=CD2-CO2=1

    20、32-52=169-25=144,解得OD=12米BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑动了7米【考点】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键4、ABC为直角三角形或等腰三角形【解析】【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断ABC的形状【详解】解:a2c2b2c2=a4b4,a4b4a2c2+b2c2=0,(a4b4)(a2c2b2c2)=0,(a2+b2)(a2b2)c2(a2b2)=0,(a2+b2c2)(a2b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即ABC为直角三角形或等腰三角形5、(1)画图见解析;(2)【解析】【分析】(1)利用勾股定理在网格中确定再顺次连接即可;(2)利用长方形的面积减去周围三个三角形的面积即可.【详解】解:(1)如图,即为所求作的三角形,其中: (2) 故答案为:【考点】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基础强化北师大版八年级数学上册第一章勾股定理综合测试试题(详解).docx
    链接地址:https://www.ketangku.com/wenku/file-959348.html
    相关资源 更多
  • 小学二年级数学《1--9的乘法》同步练习题(名师推荐)word版.docx小学二年级数学《1--9的乘法》同步练习题(名师推荐)word版.docx
  • 2016年秋高中地理选修六(人教版)课件:专题一 .ppt2016年秋高中地理选修六(人教版)课件:专题一 .ppt
  • 小学二年级数学《1--9的乘法》同步练习题(各地真题)word版.docx小学二年级数学《1--9的乘法》同步练习题(各地真题)word版.docx
  • 小学二年级数学《1--9的乘法》同步练习题(各地真题).docx小学二年级数学《1--9的乘法》同步练习题(各地真题).docx
  • 小学二年级数学《1--9的乘法》同步练习题(原创题).docx小学二年级数学《1--9的乘法》同步练习题(原创题).docx
  • 小学二年级数学《1--9的乘法》同步练习题(历年真题)word版.docx小学二年级数学《1--9的乘法》同步练习题(历年真题)word版.docx
  • 小学二年级数学《1--9的乘法》同步练习题(典型题)word版.docx小学二年级数学《1--9的乘法》同步练习题(典型题)word版.docx
  • 2016年秋高中地理选修二(人教版)课件:第五章 海洋开发 第三节 .ppt2016年秋高中地理选修二(人教版)课件:第五章 海洋开发 第三节 .ppt
  • 小学二年级数学《1--9的乘法》同步练习题(典型题).docx小学二年级数学《1--9的乘法》同步练习题(典型题).docx
  • 小学二年级数学《1--9的乘法》同步练习题(典优).docx小学二年级数学《1--9的乘法》同步练习题(典优).docx
  • 2016年秋高中地理选修二(人教版)课件:第三章 海洋水体 第二节 .ppt2016年秋高中地理选修二(人教版)课件:第三章 海洋水体 第二节 .ppt
  • 小学二年级数学《1--9的乘法》同步练习题(全国通用)word版.docx小学二年级数学《1--9的乘法》同步练习题(全国通用)word版.docx
  • 小学二年级数学《1--9的乘法》同步练习题(全优)word版.docx小学二年级数学《1--9的乘法》同步练习题(全优)word版.docx
  • 小学二年级数学《1--9的乘法》同步练习题(全优).docx小学二年级数学《1--9的乘法》同步练习题(全优).docx
  • 小学二年级数学《1--9的乘法》同步练习题(word).docx小学二年级数学《1--9的乘法》同步练习题(word).docx
  • 小学二年级数学《1--9的乘法》同步练习题(b卷)word版.docx小学二年级数学《1--9的乘法》同步练习题(b卷)word版.docx
  • 小学二年级数学《1--9的乘法》同步练习题(b卷).docx小学二年级数学《1--9的乘法》同步练习题(b卷).docx
  • 2016年秋高中地理人教版选修三课件:第五章 做一个合格的现代游客 第二节 .ppt2016年秋高中地理人教版选修三课件:第五章 做一个合格的现代游客 第二节 .ppt
  • 小学二年级数学《1--9的乘法》同步练习题(a卷)word版.docx小学二年级数学《1--9的乘法》同步练习题(a卷)word版.docx
  • 2016年秋高中地理人教版选修三课件:第二章 旅游资源 阶段复习课 .ppt2016年秋高中地理人教版选修三课件:第二章 旅游资源 阶段复习课 .ppt
  • 2016年秋高中地理人教版选修三课件:第三章 旅游景观的欣赏 第一节 .ppt2016年秋高中地理人教版选修三课件:第三章 旅游景观的欣赏 第一节 .ppt
  • 2016年秋高中历史人教版必修2课件:第9课 近代中国经济结构的变动 .ppt2016年秋高中历史人教版必修2课件:第9课 近代中国经济结构的变动 .ppt
  • 小学二年级数学《1--9的乘法》同步练习题附解析答案.docx小学二年级数学《1--9的乘法》同步练习题附解析答案.docx
  • 2016年秋高中历史人教版必修2课件:第5课 开辟新航路 .ppt2016年秋高中历史人教版必修2课件:第5课 开辟新航路 .ppt
  • 2016年秋高中历史人教版必修2课件:第2课 古代手工业的进步 .ppt2016年秋高中历史人教版必修2课件:第2课 古代手工业的进步 .ppt
  • 小学二年级数学《1--9的乘法》同步练习题附答案(黄金题型).docx小学二年级数学《1--9的乘法》同步练习题附答案(黄金题型).docx
  • 2016年秋高中历史人教版必修2课件:第1课 发达的古代农业 .ppt2016年秋高中历史人教版必修2课件:第1课 发达的古代农业 .ppt
  • 2016年秋高中历史人教版必修2课件:第18课 罗斯福新政 .ppt2016年秋高中历史人教版必修2课件:第18课 罗斯福新政 .ppt
  • 小学二年级数学《1--9的乘法》同步练习题附答案(预热题).docx小学二年级数学《1--9的乘法》同步练习题附答案(预热题).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1