2022高三数学文人教B版一轮备考参考跟踪检测:第3章 第2节 第4课时利用导数解决不等式恒成立或有解问题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022高三数学文人教B版一轮备考参考跟踪检测:第3章第2节 第4课时利用导数解决不等式恒成立或有解问题 WORD版含解析 2022 数学 文人 一轮 备考 参考 跟踪 检测 课时 利用 导数 解决
- 资源描述:
-
1、高考资源网() 您身边的高考专家第三章导数及其应用第二节导数的应用第4课时利用导数解决不等式恒成立或有解问题1(2019年全国卷)已知函数f(x)2sin xxcos xx,f(x)为f(x)的导数(1)证明:f(x)在区间(0,)存在唯一零点;(2)若当x0,时,f(x)ax,求a的取值范围解:(1)证明:设g(x)f(x),则g(x)cos xxsin x1,g(x)xcos x.当x时,g(x)0;当x时,g(x)0,所以g(x)在上单调递增,在上单调递减又g(0)0,g0,g()2,故g(x)在(0,)存在唯一零点所以f(x)在(0,)存在唯一零点(2)由题设知,f()a,f()0,可
2、得a0.由(1)知,f(x)在(0,)只有一个零点,设为x0,且当x(0,x0)时,f(x)0;当x(x0,)时,f(x)0,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减又f(0)0,f()0,所以,当x0,时,f(x)0.又当a0,x0,时,ax0,故f(x)ax.因此,a的取值范围是(,02(2019届陕西质量检测一)已知函数f(x)ln x,g(x)x1.(1)求函数yf(x)的图象在x1处的切线方程;(2)证明:f(x)g(x);(3)若不等式f(x)ag(x)对任意的x(1,)均成立,求实数a的取值范围解:(1)因为f(x),所以f(1)1.又f(1)0,所以切线的方
3、程为y01(x1),即所求切线的方程为yx1.(2)证明:设h(x)f(x)g(x)ln xx1,则h(x)1,令h(x)0,得x1,当x变化时,h(x),h(x)的变化情况如下表:x(0,1)1(1,)h(x)0h(x)极大值所以h(x)h(x)maxh(1)0,即f(x)g(x)(3)易知对任意的x(1,),f(x)0,g(x)0.当a1时,f(x)g(x)ag(x);当a0时,f(x)0,ag(x)0,所以不满足不等式f(x)ag(x);当0a1时,设(x)f(x)ag(x)ln xa(x1),则(x)a.令(x)0,得x,当x变化时,(x),(x)的变化情况下表:x(x)0(x)极大值
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-240822.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
