新教材2020-2021学年数学人教B版选择性必修第二册课时素养检测 3-1-3-2 组合数的应用 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材2020-2021学年数学人教B版选择性必修第二册课时素养检测 3-1-3-2 组合数的应用 WORD版含解析 新教材 2020 2021 学年 学人 选择性 必修 第二 课时 素养 检测 组合
- 资源描述:
-
1、课时素养检测五组合数的应用(30分钟60分)一、选择题(每小题5分,共30分,多选题全部选对的得5分,选对但不全的得3分,有选错的得0分)1.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为()A.180B.90C.360D.900【解析】选B.先从6个班中选出2个班,有种方法,其中的一种方法选出的是甲、乙两个班,再从4个人中选2个人去甲班,余下2个人去乙班,有种方法,所以共有=156=90种方法.2.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生
2、、外科医生和护士,则不同的分配方案有()A.72种B.36种C.24种D.18种【解析】选B.2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科医生,2名护士和2名外科医生,1名护士,若甲村有1名外科医生,2名护士,则有=33=9种方法,其余的分到乙村,若甲村有2名外科医生,1名护士,则有=33=9种方法,其余的分到乙村,则总共的分配方案为2(9+9)=218=36(种).3.把同一排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是()A.168B
3、.96C.72D.144【解析】选D.根据题意,有2个人各得1张,有2个人各得2张,先把这6张电影票分成4份,有种方法,即1,2,(34),(56);1,(23)(45),6;(12),3,4,(56);1,(23),4,(56);(12),3,(45),6;(12)(34),5,6,再把这4份全排列,有种方法,所以不同的分法种数是=144.4.12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.【解析】选C.从后排8人中选2人的方法有种.设此两人为A、B.安排A到前排有种方法,再安排B到前排有种方法
4、,所以共有=种方法.5.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的三棱台的6个顶点A,B,C,A1,B1,C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有()A.216种B.288种C.532种D.648种【解析】选A.先安装上底面上的3个顶点,有种方法,余下一种颜色安装在下底面的一个顶点,有3种方法,余下的两个顶点比如B1,C1,分两类,若B1与C同色,则C1有2种方法,若B1与C不同色,则C1有1种方法,所以满足条件的安装方法共有3(2+1)=216(种).6.(多选题)有6名男医生、5名女医生,从中选出2名男医生、1名女医生
5、组成一个医疗小组,则不同的选法共有()A.60种 B.种C.75种D.150种【解析】选BC.根据题意,知从6名男医生中选2名、从5名女医生中选1名组成一个医疗小组,不同的选法共有=75(种).二、填空题(每小题5分,共10分)7.(2020全国卷)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有_种.【解析】因为4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,所以先取2名同学看作一组,选法有=6(种),现在可看成是3组同学分配到3个小区,分法有:=6(种),根据分步乘法计数原理,可得不同的安排
6、方法有66=36(种).答案:368.现有10件产品,其中有2件次品,任意取出3件检查.(1)若正品A被取到,则有_种不同的取法;(2)恰有一件是次品的取法有_种.【解析】(1)=36(种).(2)从2件次品中任取1件,有种取法,从8件正品中任取2件,有种取法,由分步乘法计数原理得,不同的取法共有=2=56(种).答案:(1)36(2)56三、解答题(每小题10分,共20分)9.某医科大学的学生中,有男生12名、女生8名在某市人民医院实习,现从中选派5名参加青年志愿者医疗队.(1)某男生甲与某女生乙必须参加,共有多少种不同的选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙二人至少有一人
7、参加,有多少种选法?【解析】(1)只需从其他18人中选3人即可,共有选法=816(种).(2)只需从其他18人中选5 人即可,共有选法=8 568(种).(3)分两类:甲、乙中只有一人参加,则有种选法;甲、乙两人都参加,则有种选法.故共有选法+=6 936(种).【拓展延伸】走路问题如图,李明从A出发走到B,有多少种不同的走法(只许向右、向上)?【解析】从A走到B,需要向右走5段横线的路,向上走4段竖线的路,只要走完这9段路,就可以到达B,所以走路的方法就是从9段路中选取4段作为竖线,余下的5段作为横线,所以共有=126种方法.10.在运动会上,某代表队中赛艇运动员有10人,3人会划右舷,2人
8、会划左舷,其余5人左右两舷都会划,现要从中选6人上艇,平均分配在两舷上划桨,有多少种不同的选法?【解析】按照只会划左舷被选中的人数进行分类.第1类,不选只会划左舷的2人,需先在两舷都会划的5人中选3人划左舷,有种选法,再在剩下的5人中选3人划右舷,有种选法,故共有=100种选法;第2类,只会划左舷的1人入选,有种选法,需先在两舷都会划的5人中选2人划左舷,再在会划右舷的6人中选3人划右舷,共有=400种选法;第3类,只会划左舷的2人都入选,有种选法,先从两舷都会划的5人中选1人划左舷,再从会划右舷的7人中选3人划右舷,共有=175种选法.由分类加法计数原理,知共有100+400+175=675
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-241558.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2018-2019学年人教版高中语文选修中国古代诗歌散文欣赏课件:第六单元赏析示例种树郭橐驼传 (共65张PPT).ppt
