2022届高中数学 微专题70 求点的轨迹方程练习(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高中数学 微专题70 求点的轨迹方程练习含解析 2022 高中数学 专题 70 轨迹 方程 练习 解析
- 资源描述:
-
1、微专题70 求点的轨迹问题一、基础知识:1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘的关系,列出方程(4)化简:将方程进行变形化简,并求出的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到的关系,列出方程后化简即可(2)代入法:所求点与某已知曲线上一点存在某种关系,则可根据条件用表示出,然后代入到所在曲线方程中,即可得到关于的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程。常见的曲线特征及要素有: 圆:平面上到定点
2、的距离等于定长的点的轨迹 直角圆:若,则点在以为直径的圆上确定方程的要素:圆心坐标,半径 椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和,定点距离 双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值,定点距离 抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:。若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到的联系,
3、但可通过一辅助变量,分别找到与的联系,从而得到和的方程:,即曲线的参数方程,消去参数后即可得到轨迹方程。二、典型例题:例1:设一动点到直线的距离到它到点的距离之比为,则动点的轨迹方程是( )A. B. C. D. 思路:设,则可直接利用已知条件列出关于的等式,化简即可解:设 答案:C例2:已知两定点的坐标分别为,动点满足条件,则动点的轨迹方程为_思路:通过作图可得等价的条件为直线的斜率的关系,设,则,则可通过的斜率关系得到动点的方程解:若在轴上方,则 代入可得: ,化简可得:即 若在轴下方,则,同理可得:当时,即为等腰直角三角形,或满足上述方程所以当在一四象限时,轨迹方程为当在线段上时,同样满
4、足,所以线段的方程也为的轨迹方程综上所述:的轨迹方程为或答案:或例3:已知是抛物线的焦点,是该抛物线上的动点,则线段中点的轨迹方程是( )A. B. C. D. 思路:依题意可得, ,则有,因为自身有轨迹方程,为:,将代入可得关于的方程,即的轨迹方程: 答案:D例4:已知是抛物线上的焦点,是抛物线上的一个动点,若动点满足,则的轨迹方程是_思路:考虑设,由抛物线可得:,且,故考虑利用向量关系得到与的关系,从而利用代入法将用进行表示,代入到即可解:由抛物线可得:设 在上 ,将代入可得:,即 答案:例5:在平面直角坐标系中,直线与椭圆交于两点,且,分别为椭圆的左,右顶点,则直线与的交点所在曲线方程为
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
