2022年新高考数学 小题狂练(23)(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新高考数学 小题狂练23含解析 2022 新高 数学 小题狂练 23 解析
- 资源描述:
-
1、小题狂练(23)一、单项选择题:.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则=( )A. (-1,1)B. -1,0C. -1,0)D. (-,0【答案】B【解析】【分析】解指数不等式得集合,求函数值域得集合,再由补集、交集定义计算【详解】由题意,所以,故选:B【点睛】本题考查集合的综合运算,考查指数函数与二次函数的性质本题属于基础题2.设,则复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】利用复数的运算法则、共轭复数的定义、模的计算公式、复数的几何意义即可求得.【详解】解:因为,所以,所以,即所以在复平面对应
2、的点位于第四象限,故选:D【点睛】此题考查了复数的运算法则,共轭复数的定义,模的计算,复数的几何意义,考查了推理能力,属于基础题.3.展开式的二项式系数之和为64,则展开式中的常数项为( )A. 120B. -120C. 60D. -60【答案】C【解析】【分析】由二项式系数和求出,然后写出展开式的通项公式得常数项所在项数,从而得常数项【详解】由题意,解得,展开式通项公式为,令,所以常数项为故选:C【点睛】本题考查二项式定理,考查二项式系数和问题,掌握二项展开式通项公式是解题关键4.某学校数学建模小组为了研究双层玻璃窗户中每层玻璃厚度(每层玻璃的厚度相同)及两层玻璃间夹空气层厚度对保温效果的影
3、响,利用热传导定律得到热传导量满足关系式,其中玻璃的热传导系数焦耳/(厘米度),不流通、干燥空气的热传导系数焦耳/(厘米度),为室内外温度差,值越小,保温效果越好,现有4种型号的双层玻璃窗户,具体数据如下表:型号每层玻璃厚度(单位:厘米)玻璃间夹空气层厚度(单位:厘米)型0.43型0.34型0.53型0.44则保温效果最好的双层玻璃的型号是( )A. 型B. 型C. 型D. 型【答案】D【解析】【分析】依题意可得,所以转化为求的最大值即可得到答案.【详解】,固定,可知最大时,最小,保温效果最好,对于型玻璃,对于型玻璃,对于型玻璃,对于型玻璃,经过比较可知, 型玻璃保温效果最好.故选:D.【点睛
4、】本题考查了函数的应用,考查了求函数的最值,属于基础题.5.设函数,若,则,的大小为( )A. B. C. D. 【答案】A【解析】【分析】由于是偶函数,且在上为增函数,所以只需利用这些性质将变量转化到上即可比较出大小.【详解】解:函数的定义域为,因为,所以,所以为偶函数,所以,因为,所以 ,因为在上为增函数,所以,所以,故选:A【点睛】此题考查函数的单调性,奇偶性,指数式和对数式比较大小,属于中档题.6.五声音阶是中国古乐基本音阶,故有成语“五音不全”,中国古乐中的五声音阶依次为:宫、商、角、徵、羽.如果把这五个音阶全用上,排成一个5个音阶的音序,从所有的这些音序中随机抽出一个音序,则这个音
5、序中宫、羽不相邻的概率为( )A B. C. D. 【答案】C【解析】【分析】把这五个音阶全用上,排成一个5个音阶的音序,基本事件总数,其中宫、羽不相邻的基本事件有,由此可求出所求概率.【详解】解:中国古乐中的五声音阶依次为:官、商、角、微、羽,把这五个音阶全用上,排成一个5个音阶的音序,基本事件总数,其中宫、羽不相邻的基本事件有,则从所有的这些音序中随机抽出一个音序,这个音序中宫、羽不相邻的概率为,故选:C【点睛】此题考查概率的求法,考查古典概型、排列组合等知识,考查运算求解能力,属于基础题.7.将函数图象向右平移个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,则下列
6、说法中正确的是( )A. 的周期为B. 是偶函数C. 的图象关于直线对称D. 在上单调递增【答案】D【解析】【分析】首先利用三角恒等变换,把函数的关系式变形成正弦型函数,再利用图象的平移变换和伸缩变换的应用求出函数 的关系式,然后再利用正弦函数的性质对各选项进行判断,即可得到结果【详解】函数, 把函数图象向右平移个单位,得到, 再把各点的横坐标伸长到原来的倍(纵坐标不变), 得到 故函数的最小正周期为,故选项A错误; 函数,不为偶函数,故选项B错误;当时,故选项C错误;由于,所以,故函数 单调递增,故选项D正确 故选:D【点睛】本题考查的知识要点:三角函数关系式的恒等变换,函数的图象的平移变换
7、和伸缩变换的应用,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题8.已知是抛物线的焦点,过的直线与抛物线交于,两点,的中点为,过作抛物线准线的垂线交准线于,若的中点为,则=( )A. 4B. 8C. D. 【答案】B【解析】【分析】由的中点的坐标可得,两点的横坐标之和与纵坐标之和,设直线的方程与抛物线联立求出两根之和,进而可得的值.【详解】解:因为的中点为,所以,所以,设直线的方程为,代入抛物线的方程得,所以 所以,解得,故选:B【点睛】此题考查抛物线的性质及中点坐标的应用,属于中档题.二、多项选择题:本题共4小题,在每小题给出的选项中,有多项符合题目要求.9.
8、 下列判断正确的是( )A. 若随机变量服从正态分布,则;B. 已知直线平面,直线平面,则“”是“”的充分不必要条件;C. 若随机变量服从二项分布:,则;D. 是的充分不必要条件.【答案】ABCD【解析】【分析】由随机变量服从正态分布N(1,2),则曲线关于x1对称,即可判断A;结合面面平行性质定理,利用充分条件和必要条件的定义进行判断可判断B;运用二项分布的期望公式Enp,即可判断C;可根据充分必要条件的定义,注意m0,即可判断D【详解】A已知随机变量服从正态分布N(1,2),P(4)0.79,则曲线关于x1对称,可得P(4)10.790.21,P(2)P(4)0.21,故A正确;B若,直线
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
部编版1年级语文下册《棉花姑娘》思考2.ppt
