2022版新高考数学一轮总复习学案:第8章 第5节 第1课时 椭圆及其性质 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022版新高考数学一轮总复习学案:第8章 第5节 第1课时 椭圆及其性质 WORD版含解析 2022 新高 数学 一轮 复习 课时 椭圆 及其 性质 WORD 解析
- 资源描述:
-
1、椭圆考试要求1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率).3.理解数形结合思想.4.了解椭圆的简单应用1椭圆的定义(1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2)集合PM|MF1|MF2|2a,|F1F2|2c,其中a,c为常数且a0,c0.当2a|F1F2|时,M点的轨迹为椭圆;当2a|F1F2|时,M点的轨迹为线段F1F2;当2ab0)1(ab0)图形性质范围axabybbxbaya对称性
2、对称轴:坐标轴;对称中心:原点顶点A1(a,0),A2(a,0),B1(0,b),B2(0,b)A1(0,a),A2(0,a),B1(b,0),B2(b,0)离心率e,且e(0,1)a,b,c的关系c2a2b21点P(x0,y0)和椭圆的位置关系(1)点P(x0,y0)在椭圆内(2)点P(x0,y0)在椭圆上(3)点P(x0,y0)在椭圆外2焦点三角形如图,椭圆上的点P(x0,y0)与两焦点构成的PF1F2叫做焦点三角形设r1|PF1|,r2|PF2|,F1PF2,PF1F2的面积为S,则在椭圆1(ab0)中:(1)当r1r2,即点P的位置为短轴端点时,最大;(2),当|y0|b,即点P的位置
3、为短轴端点时,S取最大值,最大值为bc.(3)ac|PF1|ac.(4)|PF1|aex0,|PF2|aex0.(5)当PF2x轴时,点P的坐标为.(6)4c2|PF1|2|PF2|22|PF1|PF2|cos .3椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2b2c2.4已知过焦点F1的弦AB,则ABF2的周长为4a.5椭圆中点弦的斜率公式若M(x0,y0)是椭圆1(ab0)的弦AB(AB不平行于对称轴)的中点,则有6弦长公式:直线与圆锥曲线相交所得的弦长设直线l与圆锥曲线C的两个交点为A(x1,y1),B(x2,y2),若直线l斜率为k,则|AB|x1x2|y1y
4、2|.当直线l的斜率不存在时,|AB|y1y2|.一、易错易误辨析(正确的打“”,错误的打“”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆()(2)椭圆上一点P与两焦点F1,F2构成PF1F2的周长为2a2c(其中a为椭圆的长半轴长,c为椭圆的半焦距)()(3)椭圆的离心率e越大,椭圆就越圆()(4)关于x,y的方程mx2ny21(m0,n0,mn)表示的曲线是椭圆()答案(1)(2)(3)(4)二、教材习题衍生1设P是椭圆1上的点,若F1,F2是椭圆的两个焦点,则|PF1|PF2|等于()A4B5C8D10D依椭圆的定义知:|PF1|PF2|2510.2若方程1表示椭
5、圆,则k的取值范围是_(3,4)(4,5)由已知得解得3k5且k4.3已知点P是椭圆1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为_或设P(xP,yP),xP0,由题意知|F1F2|2.则SPF1F2|F1F2|yP|1,解得|yP|1.代入椭圆的方程,得1,解得xP,因此点P的坐标为或.第1课时椭圆及其性质 考点一椭圆的定义及其应用 椭圆定义的应用类型及方法(1)探求轨迹:确认平面内与两定点有关的轨迹是否为椭圆(2)应用定义转化:涉及焦半径的问题,常利用|PF1|PF2|2a实现等量转换(3)焦点三角形问题:常把正、余弦定理同椭圆定义相结合,求焦点、三
6、角形的面积等问题典例1(1)已知两圆C1:(x4)2y2169,C2:(x4)2y29,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为()A.1B1C.1D1(2)如图,椭圆1(a2)的左、右焦点分别为F1,F2,点P是椭圆上的一点,若F1PF260,那么PF1F2的面积为()AB CD(3)设F1,F2分别是椭圆1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|PF1|的最小值为_(1)D(2)D(3)5(1)设圆M的半径为r,则|MC1|MC2|(13r)(3r)168|C1C2|,所以M的轨迹是以C1,C2为焦点的椭圆,且 2a16,2c8
7、,故所求的轨迹方程为1.(2)由题意知|PF1|PF2|2a,|F1F2|24a216,由余弦定理得4a216|PF1|2|PF2|22|PF1|PF2|cos 60,即4a216(|PF1|PF2|)23|PF1|PF2|,|PF1|PF2|,SPF1F2|PF1|PF2|sin 60,故选D.(3)由题意知,点M在椭圆外部,且|PF1|PF2|10,则|PM|PF1|PM|(10|PF2|)|PM|PF2|10|F2M|10(当且仅当点P,M,F2三点共线时等号成立)又F2(3,0),则|F2M|5.|PM|PF1|5,即|PM|PF1|的最小值为5.点评:解答本例(3)的关键是差式(|P
8、M|PF1|)转化为和式(|PM|PF2|10)而转化的依据为|PF1|PF2|2a.1已知A(1,0),B是圆F:x22xy2110(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为()A.1B1C.1D1D由题意得|PA|PB|,|PA|PF|PB|PF|r2|AF|2,点P的轨迹是以A,F为焦点的椭圆,且a,c1,b,动点P的轨迹方程为1,故选D.2已知F1,F2是椭圆C:1(ab0)的两个焦点,P为椭圆C上的一点,且PF1PF2,若PF1F2的面积为9,则b_.3法一:设|PF1|r1,|PF2|r2,则 所以2r1r2(r1r2)2(rr)4a24c24b2,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-269604.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
