2022版高考数学一轮复习 练案(49理)第七章 立体几何 高考大题规范解答系列(四)—立体几何(理)练习(含解析)新人教版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022版高考数学一轮复习 练案49理第七章 立体几何 高考大题规范解答系列四立体几何理练习含解析新人教版 2022 高考 数学 一轮 复习 49 第七 规范 解答 系列 练习 解析
- 资源描述:
-
1、高考大题规范解答系列(四)立体几何(理)1(2021安徽黄山质检)如图,直三棱柱ABCA1B1C1中,D是BC的中点,且ADBC,四边形ABB1A1为正方形(1)求证:A1C平面AB1D;(2)若BAC60,BC4,求点A1到平面AB1D的距离解析(1)连接BA1,交AB1于点E,再连接DE,由已知得,四边形ABB1A1为正方形,E为A1B的中点,D是BC的中点,DEA1C,又DE平面AB1D,A1C平面AB1D,A1C平面AB1D.(2)在直三棱柱ABCA1B1C1中,平面BCC1B1平面ABC,且BC为它们的交线,又ADBC,AD平面BCC1B1,又B1D平面BCC1B1,ADB1D,且A
2、D2,B1D2.同理可得,过D作DGAB,则DG面ABB1A1,且DG.设A1到平面AB1D的距离为h,由等体积法可得:VA1AB1DVDAA1B1,即ADDB1hAA1A1B1DG,即22h44,h.即点A1到平面AB1D的距离为.(注:本题也可建立空间直角坐标系用向量法求解)2(2019天津,17)如图,在四棱锥PABCD中,底面ABCD为平行四边形,PCD为等边三角形,平面PAC平面PCD,PACD,CD2,AD3.(1)设G,H分别为PB,AC的中点,求证:GH平面PAD;(2)求证:PA平面PCD;(3)求直线AD与平面PAC所成角的正弦值解析(1)证明:连接BD,易知ACBDH,B
3、HDH.又由BGPG,故GHPD.又因为GH平面PAD,PD平面PAD,所以GH平面PAD.(2)取棱PC的中点N,连接DN.依题意,得DNPC,又因为平面PAC平面PCD,平面PAC平面PCDPC,所以DN平面PAC,又PA平面PAC,故DNPA又已知PACD,CDDND,所以PA平面PCD.(3)连接AN,由(2)中DN平面PAC,可知DAN为直线AD与平面PAC所成的角因为PCD为等边三角形,CD2且N为PC的中点,所以DN.又DNAN,在RtAND中,sinDAN.所以,直线AD与平面PAC所成角的正弦值为.3(2018课标全国卷)如图,四边形ABCD为正方形,E,F分别为AD,BC的
4、中点,以DF为折痕把DFC折起,使点C到达点P的位置,且PFBF.(1)证明:平面PEF平面ABFD;(2)求DP与平面ABFD所成角的正弦值解析(1)由已知可得,BFPF,BFEF,所以BF平面PEF.又BF平面ABFD,所以平面PEF平面ABFD.(2)作PHEF,垂足为H.由(1)得,PH平面ABFD.以H为坐标原点,的方向为y轴正方向,|为单位长,建立如图所示的空间直角坐标系Hxyz.由(1)可得,DEPE.又DP2,DE1,所以PE.又PF1,EF2,故PEPF.可得PH,EH.则H(0,0,0),P,D,(1,),(0,0,)为平面ABFD的法向量设DP与平面ABFD所成角为,则s
5、in.所以DP与平面ABFD所成角的正弦值为.4(2020北京卷)如图,在正方体ABCDA1B1C1D1中,E为BB1的中点(1)求证:BC1平面AD1E;(2)求直线AA1与平面AD1E所成角的正弦值解析(1)如下图所示:在正方体ABCDA1B1C1D1中,ABA1B1且ABA1B1,A1B1C1D1且A1B1C1D1,ABC1D1且ABC1D1,所以,四边形ABC1D1为平行四边形,则BC1AD1,BC1平面AD1E,AD1平面AD1E,BC1平面AD1E.(2)以点A为坐标原点,AD、AB、AA1所在直线分别为x、y、z轴建立如下图所示的空间直角坐标系Axyz,设正方体ABCDA1B1C
6、1D1的棱长为2,则A(0,0,0)、A1(0,0,2)、D1(2,0,2)、E(0,2,1),(2,0,2),(0,2,1),设平面AD1E的法向量为n(x,y,z),由,得,令z2,则x2,y1,则n(2,1,2)cosn,.因此,直线AA1与平面AD1E所成角的正弦值为.5. (2021陕西汉中质检)如图所示,四棱锥PABCD的底面为直角梯形,ADCDCB90,AD1,BC3,PCCD2,PC底面ABCD,E为AB的中点(1)求证:平面PDE平面APC;(2)求直线PC与平面PDE所成的角的正弦值解析如图所示,以点C为坐标原点,直线CD,CB,CP分别为x,y,z轴,建立空间直角坐标系C
7、xyz,则相关点的坐标为C(0,0,0),A(2,1,0),B(0,3,0),P(0,0,2),D(2,0,0),E(1,2,0)(1)由于(1,2,0),(2,1,0),(0,0,2),所以(1,2,0)(2,1,0)0,(1,2,0)(0,0,2)0,所以DECA,DECP,而CPCAC,所以DE平面PAC,DE平面PDE,平面PDE平面PAC(2)设n(x,y,z)是平面PDE的一个法向量,则nn0,由于(1,2,0),(1,2,2),所以有,令x2,则y1,z2,即n(2,1,2),再设直线PC与平面PDE所成的角为,而(0,0,2),所以sin |cosn,|,直线PC与平面PDE所
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-278335.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
