2021-2022高中数学 第一章 解三角形 1.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学 第一章 解三角形 2021 2022 高中数学 三角形
- 资源描述:
-
1、余弦定理一、基础过关1在ABC中,若b2a2c2ac,则B等于()A60 B45或135C120 D302若三条线段的长分别为5,6,7,则用这三条线段()A能组成直角三角形 B能组成锐角三角形C能组成钝角三角形 D不能组成三角形3在ABC中,sin Asin Bsin C323,则cos C的值为()A. B C. D4在ABC中,已知b3,c3,A30,则角C等于()A30 B120 C60 D1505在ABC中,a,b,c分别为角A,B,C所对的边,若a2bcos C,则此三角形一定是()A等腰直角三角形B直角三角形C等腰三角形D等腰三角形或直角三角形6在ABC中,角A、B、C的对边分别
2、为a、b、c,若a2c2b2ac,则角B的值为_7已知ABC的内角B60,且AB1,BC4,则边BC上的中线AD的长为_8ABC的内角A、B、C的对边分别为a、b、c,asin Acsin Casin Cbsin B.(1)求B;(2)若A75,b2,求a,c.二、能力提升9在钝角ABC中,a1,b2,则最大边c的取值范围是()A1c3 B2c3C.c3 D2c310在ABC中,AB3,AC2,BC,则_.11在ABC中,B45,AC,cos C.(1)求边BC的长;(2)记AB的中点为D,求中线CD的长12在ABC中,角A,B,C所对的边分别为a,b,c,已知cos 2C.(1)求sin C
3、的值;(2)当a2,2sin Asin C时,求b及c的长三、探究与拓展13某人要制作一个三角形,要求它的三条高的长度分别为,则此人能否做出这样的三角形?若能,是什么形状;若不能,请说明理由答案1C2.B3.A4.B5.C6.7.8解(1)由正弦定理得a2c2acb2,由余弦定理得b2a2c22accos B,故cos B.又B为三角形的内角,因此B45.(2)sin Asin(3045)sin 30cos 45cos 30sin 45.故a1,c2.9C10.11解(1)由cos C,得sin C.sin Asin(18045C)(cos Csin C).由正弦定理知BCsin A3.(2)ABsin C2,BDAB1.由余弦定理知CD .12解(1)cos 2C12sin2C,0C,sin C.(2)当a2,2sin Asin C时,由正弦定理,得c4.由cos 2C2cos2C1及0C0),解得b或2,或13解此人能做出这样的三角形理由如下:设高线,分别对应的边为a,b,c,ABC的面积为S,S0,则由Sa得a26S,由Sb得b22S,由Sc得c10S.b2c2a2(22S)2(10S)2(26S)24S2(11252132)0,能做出这样的三角形且为钝角三角形
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
九年级物理全册 第十六章 电流做功与电功率 第二节 电流做功的快慢同步作业(pdf无答案)(新版)沪科版.pdf
