2021-2022高中数学人教版必修2教案:1-3-2球的表面积与体积 (系列一) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版必修2教案:1-3-2球的表面积与体积 系列一 WORD版含答案 2021 2022 高中 学人 必修 教案 表面积 体积 系列 WORD 答案
- 资源描述:
-
1、第三课时 球的表面积与体积(一)教学目标1知识与技能(1)了解球的表面积与体积公式(不要求记忆公式).(2)培养学生空间想象能力和思维能力.2过程与方法通过作轴截面,寻找旋转体类组合体中量与量之间的关系.3情感、态度与价值让学生更好地认识空间几何体的结构特征,培养学生学习的兴趣.(二)教学重点、难点重点:球的表面积与体积的计算难点:简单组合体的体积计算(三)教学方法讲练结合教学过程教学内容师生互动设计意图新课引入复习柱体、锥体、台体的表面积和体积,点出主题.师生共同复习,教师点出点题(板书)复习巩固探索新知1球的体积:2球的表面积:师:设球的半径为R,那么它的体积:,它的面积现在请大家观察这两
2、个公式,思考它们都有什么特点?生:这两个公式说明球的体积和表面积都由球的半径R惟一确定.其中球的体积是半径R的三次函数,球的表面积是半径R的二次函数.师 (肯定) :球的体积公式和球的表面积公式以后可以证明.这节课主要学习它们的应用.加强对公式的认识培养学生理解能力典例分析例1 如图,圆柱的底面直径与高都等于球的直径.求证:(1)球的体积等于圆柱体积的;(2)球的表面积等于圆柱的侧面积.证明:(1)设球的半径为R,则圆柱的底面半径为R,高为2R.因为,所以,.(2)因为,所以,S球 = S圆柱侧.例2 球与圆台的上、下底面及侧面都相切,且球面面积与圆台的侧面积之比为3:4,则球的体积与圆台的体
3、积之比为( )A6:13 B5:14C3:4 D7:15【解析】如图所示,作圆台的轴截面等腰梯形ABCD,球的大圆O内切于梯形ABCD.设球的半径为R,圆台的上、下底面半径分别为r1、r2,由平面几何知识知,圆台的高为2R,母线长为r1 + r2.AOB = 90,OEAB (E为切点),R2 = OE2 = AEBE = r1r2.由已知S球S圆台侧= 4R2(r1+r2)2 = 34(r1 + r2)2 =V球V圆台 =故选A.例3 在球面上有四个点P、A、B、C,如果PA、PB、PC两两垂直且PA = PB = PC = a,求这个球的体积.解:PA、PB、PC两两垂直,PA = PB
4、= PC = a.以PA、PB、PC为相邻三条棱可以构造正方体.又P、A、B、C四点是球面上四点,球是正方体的外接球 ,正方体的对角线是球的直径.教师投影例1并读题,学生先独立完成.教师投影答案并点评(本题联系各有关量的关键性要素是球的半径)教师投影例2并读题,师:请大家思考一下这道题中组合体的结构特征.生:球内切于圆台.师:你准备怎样研究这个组合体?生:画出球和圆台的轴截面.师:圆台的高与球的哪一个量相等?生:球的直径.师:根据球和圆台的体积公式,你认为本题解题关键是什么?生:求出球的半径与圆台的上、下底面半径间的关系.师投影轴截面图,边分析边板书有关过程.师:简单几何体的切接问题,包括简单
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-461857.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
六年级下册英语课件-Unit 8 What's Your Dream Part B|陕旅版(共15张PPT).ppt
