分享
分享赚钱 收藏 举报 版权申诉 / 5

类型《优化方案》2013年高考总复习文科数学第七章第6课时知能演练 轻松闯关 WORD版含答案.doc

  • 上传人:a****
  • 文档编号:466529
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:5
  • 大小:114KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    优化方案 优化方案2013年高考总复习文科数学第七章第6课时知能演练 轻松闯关 WORD版含答案 优化 方案 2013 年高 复习 文科 数学 第七 课时 知能 演练 轻松 闯关 WORD 答案
    资源描述:

    1、1(2012丹东调研)已知点F1(,0),F2(,0),动点P满足|PF2|PF1|2,当点P的纵坐标是时,点P到坐标原点的距离是()A.B.C. D2解析:选A.由已知可知c,a1,b1,双曲线方程为x2y21(x1)将y代入可求P的横坐标为x.点P到原点的距离为 .2已知双曲线1(a0,b0),F1是左焦点,O是坐标原点,若双曲线上存在点P,使|PO|PF1|,则此双曲线的离心率的取值范围是()A(1,2 B(1,)C(1,3) D2,)解析:选D.由|PO|PF1|得点P的横坐标x1,因为P在双曲线的左支上,所以a,即e2.故选D.3(2011高考江西卷)P(x0,y0)(x0a)是双曲

    2、线E:1(a0,b0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求的值解:(1)由点P(x0,y0)(x0a)在双曲线1上,有1.由题意有,可得a25b2,c2a2b26b2,e.(2)联立得4x210cx35b20.设A(x1,y1),B(x2,y2),则设(x3,y3),即又C为双曲线上一点,即x5y5b2,有(x1x2)25(y1y2)25b2.化简得2(x5y)(x5y)2(x1x25y1y2)5b2.又A(x1,y1),B(x2,y2

    3、)在双曲线上,所以x5y5b2,x5y5b2.由式又有x1x25y1y2x1x25(x1c)(x2c)4x1x25c(x1x2)5c210b2,式可化为240,解得0或4.一、选择题1(2011高考湖南卷)设双曲线1(a0)的渐近线方程为3x2y0,则a的值为()A4B3C2 D1解析:选C.渐近线方程可化为yx.双曲线的焦点在x轴上,2,解得a2.由题意知a0,a2.2已知M(2,0)、N(2,0),|PM|PN|3,则动点P的轨迹是()A双曲线 B双曲线左边一支C双曲线右边一支 D一条射线解析:选C.|PM|PN|34,由双曲线定义知,其轨迹为双曲线的一支,又|PM|PN|,点P的轨迹为双

    4、曲线的右支3(2012威海质检)若kR,则方程1表示焦点在x轴上的双曲线的充要条件是()A3k2 Bk3Ck3或k2 Dk2解析:选A.由题意可知解得3k2.4(2011高考天津卷)已知双曲线1(a0,b0)的左顶点与抛物线y22px(p0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1),则双曲线的焦距为()A2 B2C4 D4解析:选B.双曲线左顶点为A1(a,0),渐近线为yx,抛物线y22px(p0)焦点为F,准线为直线x.由题意知2,p4,由题意知2a4,a2.双曲线渐近线yx中与准线x交于(2,1)的渐近线为yx,1(2),b1.c2a2b25,c,2c2

    5、.5已知双曲线的焦点分别为F1(5,0)、F2(5,0),若双曲线上存在一点P满足|PF1|PF2|8,则此双曲线的标准方程为()A.1 B.1C.1 D.1解析:选A.焦点在x轴上,由|PF1|PF2|8得a4,又c5,从而b2c2a29.所以双曲线的标准方程为1.故选A.二、填空题6(2011高考山东卷)已知双曲线1(a0,b0)和椭圆1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为_解析:椭圆1的焦点坐标为F1(,0),F2(,0),离心率为e.由于双曲线1与椭圆1有相同的焦点,因此a2b27.又双曲线的离心率e,所以,所以a2,b2c2a23,故双曲线的方程为1.答

    6、案:17已知过点P(2,0)的双曲线C与椭圆1有相同的焦点,则双曲线C的渐近线方程是_解析:由题意,双曲线C的焦点在x轴上且为F1(4,0),F2(4,0),c4.又双曲线过点P(2,0),a2.b2,其渐近线方程为yxx.答案:xy08已知双曲线x21的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为_解析:设P(x0,y0),由题意知x01,且A1(1,0),F2(2,0),则(1x0,y0)(2x0,y0)xyx02,由P在双曲线x21上得x1,所以y3x3,所以4xx0545(x01),故当x01时,()min2.答案:2三、解答题9已知椭圆D:1与圆M:x2(y5)29

    7、,双曲线G与椭圆D有相同焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程解:椭圆D的两个焦点为F1(5,0),F2(5,0),因而双曲线中心在原点,焦点在x轴上,且c5.设双曲线G的方程为1(a0,b0),渐近线方程为bxay0且a2b225,又圆心M(0,5)到两条渐近线的距离为r3.3,得a3,b4,双曲线G的方程为1.10.如图所示,双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别为左、右焦点,双曲线的左支上有一点P,F1PF2,且PF1F2的面积为2,又双曲线的离心率为2,求该双曲线的方程解:设双曲线方程为:1(a0,b0),F1(c,0),F2(c,0),P(x0,y0)在P

    8、F1F2中,由余弦定理,得:|F1F2|2|PF1|2|PF2|22|PF1|PF2|cos(|PF1|PF2|)2|PF1|PF2|,即4c24a2|PF1|PF2|,又SPF1F22,|PF1|PF2|sin 2,|PF1|PF2|8.4c24a28,即b22.又e2,a2,双曲线的方程为:1.11(探究选做)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0)(1)求双曲线C的方程;(2)若直线ykxm(k0,m0)与双曲线C交于不同的两点M、N,且线段MN的垂直平分线过点A(0,1),求实数m的取值范围解:(1)设双曲线方程为1(a0,b0)由已知得a,c2,又a2b2c2,得b21,故双曲线C的方程为y21.(2)联立,整理得(13k2)x26kmx3m230.直线与双曲线有两个不同的交点,可得m23k21且k2.设M(x1,y1),N(x2,y2),MN的中点为B(x0,y0),则x1x2,x0,y0kx0m,由题意,ABMN,kAB(k0,m0),整理得3k24m1,将代入,得m24m0,m0或m4,又3k24m10(k0),即m.m的取值范围是(,0)(4,)

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《优化方案》2013年高考总复习文科数学第七章第6课时知能演练 轻松闯关 WORD版含答案.doc
    链接地址:https://www.ketangku.com/wenku/file-466529.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1