《优教通同步备课》高中数学(北师大版)选修1-1教案:第3章 导数在实际问题中的应用 参考教案1.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优教通同步备课
- 资源描述:
-
1、42 导数在实际问题中的应用教学目的:1. 进一步熟练函数的最大值与最小值的求法; 初步会解有关函数最大值、最小值的实际问题 教学重点:解有关函数最大值、最小值的实际问题教学难点:解有关函数最大值、最小值的实际问题 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1.极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0).就说
2、f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点3.极大值与极小值统称为极值 4. 判别f(x0)是极大、极小值的方法:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值5. 求可导函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f(x) (2)求方程f(x)=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那
3、么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f(x)在这个根处无极值6.函数的最大值和最小值:在闭区间上连续的函数在上必有最大值与最小值在开区间内连续的函数不一定有最大值与最小值 函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个7.利用导数求函数的最值步骤:求在内的极值;将的各极值与、比较得出函数在上的最值二、讲解范例:例1在边长为60 cm的正方形铁片的四角切去相等的正
4、方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?_x_x_60_60xx解法一:设箱底边长为xcm,则箱高cm,得箱子容积 令 0,解得 x=0(舍去),x=40, 并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm3解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积(后面同解法一,略)由题意可知,当x过小或过大时箱子容积很小,所以最大值出现在极值点处事实上,可导函数、在各自的定义域
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-469875.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
冀教版八年级英语上册Unit 8 Lesson 46《My Dream》 课件 (共17张PPT).ppt
