《优教通同步备课》高中数学(北师大版)选修2-2教案:第2章 导数的概念及其几何意义 第三课时参考教案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优教通,同步备课
- 资源描述:
-
1、2 导数的概念及其几何意义第三课时 导数的几何意义(二)一、教学目标:掌握切线斜率由割线斜率的无限逼近而得,掌握切线斜率的求法二、教学重点,难点:(1)能体会曲线上一点附近的“局部以直代曲”的核心思想方法;(2)会求曲线上一点处的切线斜率三、教学方法:探析归纳,讲练结合四、教学过程(一)、问题情境1情境:设是曲线上的一点,将点附近的曲线放大、再放大,则点附近将逼近一条确定 的直线2问题:怎样找到在曲线上的一点处最逼曲线的直线呢?(二)、学生活动如上图直线为经过曲线上一点的两条直线(1)判断哪一条直线在点附近更加逼近曲线(2)在点附近能作出一条比更加逼近曲线的直线吗?(3)在点附近能作出一条比更
2、加逼近曲线的直线吗?(三)、建构数学1割线及其斜率:连结曲线上的两点的直线叫曲线的割线,设曲线上的一点,过点的一条割线交曲线于另一点,则割线的斜率为2 切线的定义:随着点沿着曲线向点运动,割线在点附近越来越逼近曲线。当点无限逼近点时,直线最终就成为在点处最逼近曲线的直线,这条直线也称为曲线在点处的切线;3 切线的斜率:当点沿着曲线向点运动,并无限靠近点时,割线逼近点处的切线,从而割线的斜率逼近切线的斜率,即当无限趋近于时,无限趋近于点处的切线的斜率(四)、数学运用1例题:例1已知曲线, (1)判断曲线在点处是否有切线,如果有,求切线的斜率,然后写出切线的方程 (2)求曲线在处的切线斜率。分析:
3、(1)若是曲线上点附近的一点,当沿着曲线无限接近点时,割线的斜率是否无限接近于一个常数若有,则这个常数是曲线在点处的切线的斜率;(2)为求得过点的切线斜率,我们从经过点的任意一点直线(割线)入手。 解:(1)在曲线上点附近的取一点,设点的横坐标为,则函数的增量为,割线的斜率为,当无限趋近于时,无限趋近于常数2,曲线在点处有切线,且切线的斜率为,所求切线方程是,即 (2)设,则割线的斜率为当无限趋近于时,无限趋近于常数4,从而曲线在点处切线的斜率为。例2已知,求曲线在处的切线的斜率分析:为了求过点的切线的斜率,要从经过点的任意一条割线入手解:设,则割线的斜率:当无限趋近于时,无限趋近于常数1,曲线在点处有切线,且切线的斜率为例3已知曲线方程,求曲线在处的切线方程解:设是点附近的一点,当无限趋近于时,无限趋近于常数1,曲线在点处有切线,且切线的斜率为所求直线方程:2练习:练习 第 1,2,3题;习题2-2A组中 第 3题(五)回顾小结:求切线斜率一般步骤是:求函数增量与自变量增量的比;判断当无限趋近于时,是否无限趋近于一常数;求出这个常数(六)课外作业:1、补充:判断曲线在点处是否有切线?如果有,求出切线的方程 2、习题2-2中B组 1、2 五、教后反思:
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-470328.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
