《优选整合》人教A版高中数学 必修五 1-1-3正弦定理余弦定理综合应用学案 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优选整合 优选整合人教A版高中数学 必修五 1-1-3正弦定理余弦定理综合应用学案 优选 整合 人教 高中数学 必修 正弦 定理 余弦 综合 应用
- 资源描述:
-
1、1.1 正弦定理和余弦定理 学习目标 1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形 学习过程 一、课前准备复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理;已知两角和一边,用 定理复习2:在ABC中,已知 A,a25,b50,解此三角形二、新课导学 学习探究探究:在ABC中,已知下列条件,解三角形. A,a25,b50; A,a,b50; A,a50,b50.思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A为锐角时)试试:1. 用图示分析(A为直角时)解的情况?2用图示分析(A
2、为钝角时)解的情况? 典型例题例1. 在ABC中,已知,试判断此三角形的解的情况变式:在ABC中,若,则符合题意的b的值有_个例2. 在ABC中,求的值变式:在ABC中,若,且,求角C三、总结提升 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况) 知识拓展在ABC中,已知,讨论三角形解的情况 :当A为钝角或直角时,必须才能有且只有一解;否则无解;当A为锐角时,如果,那么只有一解;如果,那么
3、可以分下面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a、b为ABC的边,A、B分别是a、b的对角,且,则的值=( ).A. B. C. D. 2. 已知在ABC中,sinAsinBsinC357,那么这个三角形的最大角是( ). A135 B90 C120 D1503. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A锐角三角形 B直角三角形C钝角三角形 D由增加长度决定4. 在ABC中,sinA:sinB:sinC4:5:6,则cosB 5. 已知ABC中,试判断ABC的形状 课后作业 1. 在ABC中,如果利用正弦定理解三角形有两解,求x的取值范围2. 在ABC中,其三边分别为a、b、c,且满足,求角C
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-470662.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
