《优选整合》人教A版高中数学 必修五 3-3-2简单的线性规划(2)教案 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优选整合 优选整合人教A版高中数学 必修五 3-3-2简单的线性规划2教案 优选 整合 人教 高中数学 必修 简单 线性规划 教案
- 资源描述:
-
1、3.3.2简单的线性规划问题(2)一、设计问题,创设情境练习1:(1)作出不等式组表示的平面区域(如图阴影部分),即可行域.将z1=x+y变形为y=-x+z1,这是斜率为-1、随z1变化的一簇平行直线. z1是直线在y轴上的截距.当然直线要与可行域相交,即在满足约束条件时目标函数z1=x+y取得最值.由图可见,当直线z1=x+y经过可行域上的点B时,截距z1最小.解方程组得B点的坐标为x=,y=.所以z1的最小值为.同理,当直线z1=x+y与可行域的边界x+y=6重合时,z1最大为6.(2)同理将z2=3x+y化为y=-3x+z2,这是斜率为-3的一簇平行直线.如图所示,当它过可行域上的点A(
2、0,6)时,z2最小为6.(3)同理将z3=x+4y化为y=-x+,它是斜率为-的一簇直线.如图所示,当直线经过可行域上的点C时,最大,即z3最大.解方程组得点C的坐标为x=,y=.所以z3的最小值为.问题1:是目标函数对应的直线的斜率与可行域中边界对应的直线的斜率的大小关系不同导致的.练习2:解:z=ax+y可化为y=-ax+z,因为z=ax+y在可行域中的点B处取得最小值,所以,直线z=ax+y与可行域只有一个公共点B或与边界AB重合,或与边界BC重合.因此-2-a-.所以实数a的取值范围是.练习3:学生探究一:可以把可行域中的所有“整点”都求出来.求这些最优解时,可根据可行域对x的限制条
3、件,先令x去整数,然后代入到可行域,求出y的范围,并进一步求出y的整数值.学生探究二:由于x,yN,则必有x+yN.又因为当x=,y=时,z1的最小值为,且直线z1=x+y应该向上方(或右方,或右上方)移动,所以相应的z1的值大于.所以令z1=x+y=5,即y=-x+5,代入得即1x3,所以当或时,z1取得最小值5.问题2:结合等量关系,将“二元”问题转化为“一元”问题求解.当可行域范围较小,包含的整点个数很少时,方法一比较简洁;反之,方法二较为简洁.二、运用规律,解决问题【例题】解:设需截第一种钢板x张,第二种钢板y张,则用图形表示以上限制条件,得到如图所示的平面区域(阴影部分).由题意,得
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
高三英语备考复习精品课件:UNIT4 SHARING(新人教版选修7).ppt
