分享
分享赚钱 收藏 举报 版权申诉 / 21

类型广东省深圳高级中学2021届高三数学10月月考试题.doc

  • 上传人:a****
  • 文档编号:470831
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:21
  • 大小:1.56MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    广东省 深圳 高级中学 2021 届高三 数学 10 月月 考试题
    资源描述:

    1、广东省深圳高级中学2021届高三数学10月月考试题一、单项选择题:本题共8小题,每小题满分5分,共40分。在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分。1设集合,则( )ABC或D2已知为虚数单位,则复数的虚部为( )ABCD3设,则“”是“直线与直线平行”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件4设向量满足,则( )A2BCD5在的二项展开式中,的系数为( )ABCD6已知函数,则不等式的解集为( )ABCD7如图,双曲线的左,右焦点分别为,过作直线与C及其渐近线分别交于Q,P两点,且Q为的中点若等腰三角形的底边的长等于C的半焦距

    2、则C的离心率为( )ABCD8将函数的图象向右平移()个单位长度得到的图象若函数在区间上单调递增,且的最大负零点在区间上,则的取值范围是( )ABCD二、多项选择题:本题共4小题,每小题满分5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对得5分,部分选对得3分,有选错的得0分。9某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、“90后”从事互联网行业岗位分布条形图,则下列结论中正确的是( )注:“90后”指1990年及以后出生的人,“80后”指1980-1989年之间出生的人,“80前”指1979年及以前出生的人A互联网行业从业人员中“90

    3、后”占一半以上B互联网行业中从事技术岗位的人数超过总人数的20%C互联网行业中从事运营岗位的人数“90后”比“80前”多D互联网行业中从事技术岗位的人数“90后”比“80后”多10对于实数a,b,m,下列说法正确的是( )A若,则B若,则C若,则D若且,则11已知函数,且实数满足若实数是函数的一个零点,那么下列不等式中可能成立的是( )ABCD12已知函数,若在和处切线平行,则( )ABCD三、填空题:本题共4小题,每小题5分,共20分,其中16题第一个空2分,第二个空3分。13已知,且,则_14一组数据的平均数是8,方差是16,若将这组数据中的每一个数据都减去4,得到一组新数据,则所得新数据

    4、的平均数与方差的和是_15已知直线与抛物线相交于、两点,且,直线经过的焦点则_,若为上的一个动点,设点的坐标为,则的最小值为_ 16 已知A,B,C为球O的球面上的三个定点,P为球O的球面上的动点,记三棱锥的体积为,三棱锥的体积为若的最大值为3则球O的表面积为_四、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17. (10分)请从下面三个条件中任选一个,补充在下面的问题中,并解决该问题.;ABC的面积为,在ABC中,角A,B,C所对的边分别为a,b,c. 已知,A为钝角,. (1)求边a的长(2)求的值18. (12分) 已知等差数列的公差,若,且,成等比数列(1)求数列的通项公

    5、式;(2)设,求数列的前项和19(12分)如图所示,在三棱柱中,侧面是矩形,是的中点,与交于,且面.(1)求证:;(2)若,求二面角的余弦值.20(12分)如图,设点A,B的坐标分别为,直线AP,BP相交于点P,且它们的斜率之积为(1)求P的轨迹方程;(2)设点P的轨迹为C,点M、N是轨迹为C上不同于A,B的两点,且满足APOM,BPON,求MON的面积21(12分)某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品

    6、是否为不合格品相互独立(1)记件产品中恰有件不合格品的概率为,求的最大值点;(2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?22. (12分)已知,函数.(1)经过原点分别作曲线的切线,若两切线的斜率互为倒数,证明:;(2)设,当时,恒成立,试求实数的取值范围. 参考答案1C【解析】【分析】首先求得集合M,然后进行交集运

    7、算即可.【详解】求解二次不等式可得,结合交集的定义可得:或.本题选择C选项.【点睛】本题主要考查集合的表示方法,交集的运算法则等知识,意在考查学生的转化能力和计算求解能力.2A【解析】【分析】先化简复数z,然后由虚部定义可求【详解】12i,复数的虚部是2,故选A【点睛】该题考查复数代数形式的运算、复数的基本概念,属基础题3A【解析】【详解】【分析】试题分析:若,则直线与直线平行,充分性成立;若直线与直线平行,则或,必要性不成立考点:充分必要性4B【解析】【分析】由题意结合向量的运算法则求解其模即可.【详解】由题意结合向量的运算法则可知:.本题选择B选项.【点睛】本题主要考查向量的运算法则,向量

    8、的模的求解等知识,意在考查学生的转化能力和计算求解能力.5C【解析】【分析】【详解】因为,可得时,的系数为,C正确.6D【解析】【分析】判断出的奇偶性与单调性,然后将不等式转化为,通过单调性变成自变量的比较,从而得到关于的不等式,求得最终结果.【详解】 为奇函数当时,可知在上单调递增在上也单调递增,即为上的增函数 ,解得:或本题正确选项:【点睛】本题考查利用函数单调性与奇偶性求解函数不等式的问题,解题关键在于将不等式转化为符合单调性定义的形式,利用单调性转变为自变量的比较.7C【解析】【分析】先根据等腰三角形的性质得,再根据双曲线定义以及勾股定理列方程,解得离心率.【详解】连接,由为等腰三角形

    9、且Q为的中点,得,由知由双曲线的定义知,在中, (负值舍去)故选:C【点睛】本题考查双曲线的定义、双曲线的离心率,考查基本分析求解能力,属基础题.8C【解析】【分析】利用函数的图象变换规律,求得的解析式,再利用正弦函数的性质求得的取值范围【详解】将函数的图象向右平移()个单位长度得到的图象若函数在区间上单调递增,则,且,求得令,求得,故函数的零点为,的最大负零点在区间上,由令,可得,故选:C【点睛】本题主要考查函数的图象变换规律,正弦函数的性质综合应用,属于中档题9ABC【解析】【分析】根据饼状图确定互联网行业从业人员中“90后”占总人数比例,即可判断A;根据条形图确定互联网行业从业人员中“9

    10、0后”从事技术岗位的人数占总人数比例,即可判断B;根据条形图确定互联网行业从业人员中“90后”从事运营岗位的人数占总人数比例,根据饼状图确定“80前”的人数占总人数的比例,两者比较可判断C;根据条形图确定互联网行业从业人员中“90后”从事技术岗位的人数占总人数的比例,但“80后”中从事技术岗位的比例不可确定,即可判断D.【详解】由题图可知,互联网行业从业人员中“90后”占总人数的56%,超过一半,A正确;互联网行业从业人员中“90后”从事技术岗位的人数占总人数的,超过20%,所以互联网行业从业人员(包括“90后”“80后”“80前”)从事技术岗位的人数超过总人数的20%,B正确;互联网行业从业

    11、人员中“90后”从事运营岗位的人数占总人数的,超过“80前”的人数占总人数的比例,且“80前”中从事运营岗位的比例未知,C正确;互联网行业从业人员中“90后”从事技术岗位的人数占总人数的,小于“80后”的人数占总人数的比例,但“80后”中从事技术岗位的比例未知,D不一定正确故选:ABC【点睛】本题考查饼状图与条形图,考查数据分析与判断能力,属基础题.10ABCD【解析】【分析】根据不等式性质可判断A;分类讨论,并结合不等式性质判断B;作差法判断C;先根据对数性质得,再利用导数研究函数单调性,最后根据单调性确定函数值域,即可判断D.【详解】对实数a,b,m,A正确;,分三种情况,当时,;当时,;

    12、当时,成立,B正确;,C正确;若,且,且,设,在区间上单调递增, ,即,D正确故选:ABCD【点睛】本题考查根据不等式性质判断大小、利用作差法比较大小、利用单调性研究取值范围,考查基本分析判断能力,属中档题.11ABC【解析】【分析】先判断单调性,再根据积的符号分类讨论,结合示意图确定选择.【详解】由,可知函数在区间上单调递增因为实数a,b,满足,则,可能都小于0或有1个小于0,2个大于0,如图则A,B,C可能成立,D不可能成立 【点睛】本题考查函数单调性、函数零点,考查基本分析判断能力,属基础题.12AD【解析】【分析】先求导数,再根据导数几何意义得等量关系,即可判断A;利用基本不等式可判断

    13、BCD.【详解】由题意知,因为在和处切线平行,所以,即,化简得,A正确;由基本不等式及,可得,即,B错误;,C错误;,D正确故选:AD【点睛】本题考查导数几何意义、基本不等式应用,考查基本分析求解与判断能力,属中档题.13【解析】分析:根据的值得到的值,再根据二倍角公式得到的值详解:因此且,故,所以,故填点睛:三角函数的化简求值问题,可以从四个角度去分析:(1)看函数名的差异;(2)看结构的差异;(3)看角的差异;(4)看次数的差异对应的方法是:弦切互化法、辅助角公式(或公式的逆用)、角的分拆与整合(用已知的角表示未知的角)、升幂降幂法1420【解析】【分析】根据新数据与原数据平均数与方差的关

    14、系直接求解,即得结果.【详解】因为原数据平均数是8,方差为16,将这组数据中的每一个数据都减去4,所以新数据的平均数为,方差不变仍为16,所以新数据的方差与平均数的和为20故答案为:20【点睛】本题考查新数据与原数据平均数与方差的关系,考查基本分析求解能力,属基础题.15 【解析】【分析】将直线的方程与抛物线的方程联立,列出韦达定理,利用抛物线的焦点弦长公式可求得的值,设点,可得,利用两点间的距离公式结合二次函数的基本性质可求得的最小值.【详解】由题意知,直线,即直线经过抛物线的焦点,即直线的方程为设、,联立,消去整理可得,由韦达定理得,又,则,抛物线设,由题意知,则,当时,取得最小值,的最小

    15、值为故答案为:;.【点睛】本题考查利用抛物线的焦点弦长求参数,同时也考查了抛物线上的点到定点距离最值的求解,考查了抛物线方程的应用,考查计算能力,属于中等题.16【解析】【分析】先求出的外接圆半径,根据题意确定的最大值取法,再根据的最大值为3,解得球半径,最后根据球的表面积公式得结果.【详解】如图所示,设的外接圆圆心为,半径为r,则平面ABC设球O的半径为R,则,即所以当P,O,三点共线时,即由,得,所以球O的表面积故答案为:【点睛】本题考查三棱锥及其外接球的体积,考查空间想象能力以及基本分析求解能力,属中档题.18【解析】(1)法1:, .1分,成等比数列,化简得,.3分又因为 .4分【注:

    16、无此步骤,本得分点不得分】且由可得,.5分【注:只要算出即可给分】数列的通项公式是 .6分法2:,成等比数列, . 1分,化简得, .3分又因为 .4分【注:无此步骤,本得分点不得分】得 .5分数列的通项公式是 .6分(2)由(1)得, .9分 .11分 所以 .12分19(1)详见解析;(2).【解析】【分析】(1)推导出DBAB1,从而AB1平面BDC,由此能证明AB1BC,(2)以O为坐标原点,OA,O,OC所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【详解】解:(1)由于侧面是矩形,是中点,故,所以,又,于是,而面,所以 面,得到 .4分(2)如图

    17、,建立空间直角坐标系,则,.6分可以计算出面的一个法向量的坐标为.9分而平面的一个法向量为.10分设二面角的大小为,则.12分【点睛】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题20(1)(2)【解析】【分析】(1)直接法求动点轨迹方程:先设动点坐标,根据条件斜率之积为列方程:,化简整理得标准方程,注意变形过程中的等价性,即纯粹性(2)解决解析几何中定值问题,一般方法为以算代证,即计算出的面积,由平行条件得斜率关系:由得,即得坐标关系;设直线的方程,与椭圆方程联立

    18、,利用韦达定理可得,代入可得,而三角形面积可表示为,将代入化简得【详解】(1)由已知设点的坐标为,由题意知,化简得的轨迹方程为 .4分(2)证明:由题意是椭圆上非顶点的两点,且,则直线斜率必存在且不为0,又由已知因为,所以 .5分设直线的方程为,代入椭圆方程,得, 设的坐标分别为,则 .7分又, 所以,得 .9分又,所以,即的面积为定值 .12分考点:直接法求动点轨迹方程,圆锥曲线中定值问题【思路点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前

    19、已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21(1);(2)(i);(ii)应该对余下的产品作检验.【解析】【分析】(1)利用独立重复实验成功次数对应的概率,求得,之后对其求导,利用导数在相应区间上的符号,确定其单调性,从而得到其最大值点,这里要注意的条件;(2)先根据第一问的条件,确定出,在解(i)的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;在解(ii)的时候,就通过比较两个期望的大小,得到结果.【详解】(1)件产品中恰有件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为;(2)由(1)知,.(i)令表示余下的件产品中的不合格品件数,依题意知,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.【点睛】该题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论.22

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:广东省深圳高级中学2021届高三数学10月月考试题.doc
    链接地址:https://www.ketangku.com/wenku/file-470831.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1