《优选整合》人教A版高中数学必修四 3-1-1 两角和与差的正弦、余弦和正切公式 教案 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优选整合 优选整合人教A版高中数学必修四 3-1-1 两角和与差的正弦、余弦和正切公式 教案 优选 整合 人教 高中数学 必修 正弦 余弦 正切 公式
- 资源描述:
-
1、3.1.1 两角和与差的正弦、余弦和正切公式一、教学目标:知识与技能: 通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.过程与方法:通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力. 情感、态度与价值观通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,
2、激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法.二重点难点重点:通过探究得到两角差的余弦公式.难点:探索过程的组织和适当引导.三、教材与学情分析本节是以一个实际问题做引子,目的在于从中提出问题,引入本章的研究课题.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:实际问题中存在研究像tan(45+)这样的包含两个角的三角函数的需要;实际问题中存在研究像sin与tan(45+)这样的包含两角和的三角函数与、45单角的三角函数的关系的需要.以实例引入课题也有利于体现数学与实际问题的联系,增强学生
3、的应用意识,激发学生学习的积极性,同时也让学生体会数学知识产生、发展的过程. 本节首先引导学生对cos(-)的结果进行探究,让学生充分发挥想象力,进行猜想,给出所有可能的结果,然后再去验证其真假.这也展示了数学知识的发生、发展的具体过程,最后提出了两种推导证明“两角差的余弦公式”的方案.方案一,利用单位圆上的三角函数线进行探索、推导,让学生动手画图,构造出-角,利用学过的三角函数知识探索存在一定的难度,教师要作恰当的引导.方案二,利用向量知识探索两角差的余弦公式时,要注意推导的层次性:在回顾求角的余弦有哪些方法时,联系向量知识,体会向量方法的作用;结合有关图形,完成运用向量方法推导公式的必要准
4、备;探索过程不应追求一步到位,应先不去理会其中的细节,抓住主要问题及其线索进行探索,然后再反思,予以完善;补充完善的过程,既要运用分类讨论的思想,又要用到诱导公式. 本节是数学公式的教学,教师要遵循公式教学的规律,应注意以下几方面:要使学生了解公式的由来;使学生认识公式的结构特征,加以记忆;使学生掌握公式的推导和证明;通过例子使学生熟悉公式的应用,灵活运用公式进行解答有关问题.四、教学方法 问题引导,主动探究,启发式教学五、教学过程(一)导入新课思路1.(问题导入)播放多媒体,出示问题,让学生认真阅读课本引例.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:实际问
5、题中存在研究像tan(45+)这样的包含两个角的三角函数的需要;实际问题中存在研究像sin与tan(45+)这样的包含两角和的三角函数与、45单角的三角函数的关系的需要.在此基础上,再一般化而提出本节的研究课题进入新课.思路2.(复习导入)我们在初中时就知道cos45=,cos30=,由此我们能否得到cos15=cos(45-30)=?这里是不是等于cos45-cos30呢?教师可让学生验证,经过验证可知,我们的猜想是错误的.那么究竟是个什么关系呢?cos(-)等于什么呢?这时学生急于知道答案,由此展开新课:我们就一起来探讨“两角差的余弦公式”.这是全章公式的基础.(二)新知探究、提出问题请学
6、生猜想cos(-)=?利用前面学过的单位圆上的三角函数线,如何用、的三角函数来表示cos(-)呢?利用向量的知识,又能如何推导发现cos(-)=?细心观察C(-)公式的结构,它有哪些特征?其中、角的取值范围如何?如何正用、逆用、灵活运用C(-)公式进行求值计算? 活动:问题,出示问题后,教师让学生充分发挥想象能力尝试一下,大胆猜想,有的同学可能就首先想到cos(-)=cos-cos的结论,此时教师适当的点拨,然后让学生由特殊角来验证它的正确性.如=60,=30,则cos(-)=cos30=,而cos-cos=cos60-cos30=,这一反例足以说明cos(-)cos-cos. 让学生明白,要
7、想说明猜想正确,需进行严格证明,而要想说明猜想错误,只需一个反例即可. 问题,既然cos(-)cos-cos,那么cos(-)究竟等于什么呢?由于这里涉及的是三角函数的问题,是-这个角的余弦问题,我们能否利用单位圆上的三角函数线来探究呢?图1如图1,设角的终边与单位圆的交点为P1,POP1=,则POx=-.过点P作PM垂直于x轴,垂足为M,那么OM就是角-的余弦线,即OM=cos(-),这里就是要用角、的正弦线、余弦线来表示OM.过点P作PA垂直于OP1,垂足为A,过点A作AB垂直于x轴,垂足为B,过点P作PC垂直于AB,垂足为C.那么,OA表示cos,AP表示sin,并且PAC=P1Ox=.
8、于是,OM=OB+BM=OB+CP=OAcosa+APsina=coscos+sinsin,所以,cos(-)=coscos+sinsin. 教师引导学生进一步思考,以上的推理过程中,角、-是有条件限制的,即、-均为锐角,且,如果要说明此结果是否对任意角、都成立,还要做不少推广工作,并且这项推广工作的过程比较繁琐,由同学们课后动手试一试.图2 问题,教师引导学生,可否利用刚学过的向量知识来探究这个问题呢?如图2,在平面直角坐标系xOy内作单位圆O,以Ox为始边作角、,它们的终边与单位圆O的交点分别为A、B,则=(cos,sin),=(cos,sin),AOB=-. 由向量数量积的定义有=|co
9、s(-)=cos(-), 由向量数量积的坐标表示有 =(cos,sin)(cos,sin)=coscos+sinsin, 于是,cos(-)=coscos+sinsin. 我们发现,运用向量工具进行探究推导,过程相当简洁,但在向量数量积的概念中,角-必须符合条件0 -,以上结论才正确,由于、都是任意角,-也是任意角,因此就是研究当-是任意角时,以上公式是否正确的问题.当-是任意角时,由诱导公式,总可以找到一个角0,2),使cos=cos(-),若0,则=cos=cos(-).若,2,则2-0,且=cos(2-)=cos=cos(-).由此可知,对于任意角、都有cos(-)=coscos+sin
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-471140.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2020-2021学年新高中英语人教版选择性必修第一册课件:UNIT 1 SECTION A READING AND THINKING .pptx
