《优选整合》高中数学人教A版选修4-4 第二讲 复习 素材 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优选整合 优选整合高中数学人教A版选修4-4 第二讲 复习 素材 优选 整合 高中 学人 选修 第二
- 资源描述:
-
1、参数方程【考情分析】考查直线、圆和圆锥曲线的参数方程以及简单的应用问题基础梳理1参数方程的意义在平面直角坐标系中,如果曲线上的任意一点的坐标x,y都是某个变量的函数并且对于t的每个允许值,由方程组所确定的点M(x,y)都在这条曲线上,则该方程叫曲线的参数方程,联系变数x,y的变数t是参变数,简称参数相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程2常见曲线的参数方程的一般形式(1)经过点P0(x0,y0),倾斜角为的直线的参数方程为(t为参数)设P是直线上的任一点,则t表示有向线段的数量(2)圆的参数方程(为参数)(3)圆锥曲线的参数方程椭圆1的参数方程为(为参数)双曲线1的参数方
2、程为(为参数)抛物线y22px的参数方程为(t为参数)双基自测1 极坐标方程cos 和参数方程(t为参数)所表示的图形分别是()A直线、直线 B直线、圆C圆、圆 D圆、直线解析cos x,cos 代入到cos ,得,2x,x2y2x表示圆又相加得xy1,表示直线答案D2若直线(t为实数)与直线4xky1垂直,则常数k_.解析参数方程所表示的直线方程为3x2y7,由此直线与直线4xky1垂直可得1,解得k6.答案63二次曲线(是参数)的左焦点的坐标是_解析题中二次曲线的普通方程为1左焦点为(4,0)答案(4,0)4(2011广州调研)已知直线l的参数方程为:(t为参数),圆C的极坐标方程为2si
3、n ,则直线l与圆C的位置关系为_解析将直线l的参数方程:化为普通方程得,y12x,圆2sin 的直角坐标方程为x2(y)22,圆心(0,)到直线y12x的距离为,因为该距离小于圆的半径,所以直线l与圆C相交答案相交5(2011广东)已知两曲线参数方程分别为(0)和(tR),它们的交点坐标为_解析由(0)得,y21(y0)由(tR)得,xy2,5y416y2160.解得:y2或y24(舍去)则xy21又0,得交点坐标为.答案考向一参数方程与普通方程的互化【例1】把下列参数方程化为普通方程:(1)(2)审题视点 (1)利用平方关系消参数;(2)代入消元法消去t.解(1)由已知由三角恒等式cos2
4、 sin21, 可知(x3)2(y2)21,这就是它的普通方程(2)由已知t2x2,代入y5t中,得y5(2x2),即xy50就是它的普通方程 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围【训练1】 (2010陕西)参数方程(为参数)化成普通方程为_解析由得 22得:x2(y1)21.答案x2(y1)21考向二直线与圆的参数方程的应用【例2】已知圆C:(为参数)和直线l:(其中t为参数,为直线l的倾斜角)(1)当时,求圆上的点到直线l
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
