《优选整合》高中数学人教A版选修4-5 第四讲 复习 教案 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优选整合 优选整合高中数学人教A版选修4-5 第四讲 复习 教案 优选 整合 高中 学人 选修 第四
- 资源描述:
-
1、第四讲 复习教学目标:1、 会用数学归纳法证明一些简单问题;2、 会用数学归纳法证明贝努力不等式,了解贝努力不等式的应用条件。知识梳理答案:等式问题证明不等式贝努利不等式典型例题类型一 归纳递推要用好归纳假设数学归纳法中两步缺一不可,第一步归纳奠基,第二步起到递推传递作用在第二步的证明中,首先进行归纳假设,而且必须应用归纳假设(nk时命题成立),推出nk1时,命题成立例2 用数学归纳法证明:对于nN,.【规范解答】(1)当n1时,左边,右边,所以等式成立(2)假设nk时等式成立,即,当nk1时,所以当nk1时,等式也成立由(1)(2)可知对于任意的自然数n,等式都成立再练一题1数列的前n项的和
2、记为Sn.(1)求出S1,S2,S3的值;(2)猜想出Sn的表达式;(3)用数学归纳法证明你的猜想【解】(1)S1,S2,S3.(2)猜想:Sn.(3)证明:当n1时S1a1,右边.等式成立假设当nk时,Sk,则当nk1时,Sk1Skak1,即当nk1时,等式成立,Sn.类型二 不等式证明中的强化命题如果c为常数,用数学归纳法证明f(n)c一类不等式时,从k到k1的归纳过渡很易卡断思路,此时利用g(n)c,且g(n)c,把命题结论强化,即把c换成g(n)由于归纳假设也随之加强,这样强化了命题更易于用数学归纳法证明例2 证明不等式1(n2,nN)【解析】可先证明1(n2),(*)对(*)运用数学
3、归纳法证明:(1)当n2时,(*)显然成立(2)设nk时,不等式(*)成立,即1.当nk1时,1111.故当nk1时,不等式(*)成立根据(1)和(2)知,对nN且n2,不等式(*)成立,故原不等式成立再练一题2设0a1,定义a11a,an1a,求证:对一切正整数nN,有1an.【证明】(1)当n1时,a11,a11a,显然命题成立(2)假设nk(kN)时,命题成立,即1ak.当nk1时,由递推公式,知ak1a(1a)a1.同理,ak1a1a.故当nk1时,命题也成立,即1ak1.综合(1)(2)可知,对一切正整数n,有1an.类型三 从特殊到一般的数学思想方法探索性命题是近几年高考试题中经常
4、出现的一种题型,此种问题未给出结论,需要从特殊情况入手,猜想、探索出结论,再对结论进行证明,主要是应用数学归纳法例3 已知数列bn是等差数列,且b11,b1b2b10145.(1)求数列bn的通项公式bn;(2)设数列an的通项anloga(其中a0,且a1),Sn是数列an的前n项和试比较Sn与logabn1的大小,并证明你的结论【规范解答】(1)设数列bn的公差为d.由题意得解得故bn13(n1)3n2.(2)由bn3n2知,Snloga(11)logalogaloga.又logabn1loga,因此要比较Sn与logabn1的大小,可先比较(11)与的大小取n1,有(11);取n2,有(
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
