广东省珠海四中2014届高三数学理二轮专题复习:圆锥曲线 WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省珠海四中2014届高三数学理二轮专题复习:圆锥曲线 WORD版含答案 广东省 珠海 2014 届高三数 学理 二轮 专题 复习 圆锥曲线 WORD 答案
- 资源描述:
-
1、2014珠海四中高三数学(理)专题复习-圆锥曲线一、选择、填空题1、(2013广东高考)已知中心在原点的双曲线的右焦点为,离心率等于,在双曲线的方程是 ( )A . B CD2、(2010广东高考)若圆心在轴上、半径为的圆位于轴左侧,且与直线相切,则圆的方程是 3、(2009广东高考)巳知椭圆的中心在坐标原点,长轴在轴上,离心率为,且上一点到的两个焦点的距离之和为12,则椭圆的方程为 4、(2014广州一模)圆关于直线对称的圆的方程为A BC D5、(2014梅州3月高考模拟)已知双曲线C的焦点、实轴端点恰好是椭圆的长轴的端点、焦点,则双曲线C的方程是6、(2014韶关一模)已知椭圆与双曲线的
2、焦点相同,且椭圆上任意一点到两焦点的距离之和为,那么椭圆的离心率等于( )A. B. C. D. 7、(2014深圳一模)已知双曲线与椭圆有相同的焦点, 且双曲线的渐近线方程为,则双曲线的方程为 二、解答题1、(2013广东高考)已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.() 求抛物线的方程;() 当点为直线上的定点时,求直线的方程;() 当点在直线上移动时,求的最小值.2、(2012广东高考)在平面直角坐标系中,已知椭圆:()的离心率且椭圆上的点到点的距离的最大值为3.()求椭圆的方程;()在椭圆上,是否存在点,使得直线:与圆:相交于
3、不同的两点、,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.3、(2011广东高考)设圆与两圆,中的一个内切,另一个外切(1)求的圆心轨迹的方程;(2)已知点,且为上动点,求的最大值及此时点的坐标4、(2014广州一模)已知双曲线:的中心为原点,左,右焦点分别为,离心率为,点是直线上任意一点,点在双曲线上,且满足(1)求实数的值;(2)证明:直线与直线的斜率之积是定值;(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同两点,在线段上取异于点,的点,满足,证明点恒在一条定直线上5、已知点是椭圆的右焦点,点、分别是轴、轴上的动点,且满足若点满足(1)求点的轨迹的方程;
4、(2)设过点任作一直线与点的轨迹交于、两点,直线、与直线分别交于点、(为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由6、已知椭圆的左焦点及点,原点到直线的距离为(1)求椭圆的离心率;(2)若点关于直线的对称点在圆上,求椭圆的方程及点的坐标7、(2014深圳一模)如图7,直线,抛物线,已知点在抛物线上,且抛物线上的点到直线的距离的最小值为(1)求直线及抛物线的方程;(2)过点的任一直线(不经过点)与抛物线交于、两点,直线与直线相交于点,记直线,的斜率分别为, 问:是否存在实数,使得?若存在,试求出的值;若不存在,请说明理由8、(2014佛山期末)如图所示,已知椭圆的两个焦
5、点分别为、,且到直线的距离等于椭圆的短轴长. () 求椭圆的方程;() 若圆的圆心为(),且经过、,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.9、(广东省百所高中2014届高三11月联考)已知椭圆C1:的离心率为,直线l:yx2与以原点为圆心,以椭圆C1的短半轴长为半径的圆O相切。(1)求椭圆C1的方程;(2)抛物线C2:y22px(p0)与椭圆C1有公共焦点,设C2与x轴交于点Q,不同的两点R,S在C2上(R,S与Q不重合),且满足,求的取值范围。10、(广东省宝安中学等七校2014届高三第二次联考)已知定点,动点,且满足成等差数列.() 求点的轨迹的方程;()
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
三年级数学上册 第二单元 估算作业(pdf无答案) 冀教版.pdf
