《全程复习方略》2014年人教A版数学理(福建用)课时作业:第二章 第十二节导数与生活中的优化问题及综合应用.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全程复习方略
- 资源描述:
-
1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(十五) 一、选择题1.设f(x),g(x)在a,b上可导,且f(x)g(x),则当axg(x)(B)f(x)g(x)+f(a)(D)f(x)+g(b)g(x)+f(b)2.若对任意的x0,恒有ln xpx-1(p0),则p的取值范围是()(A)(0,1(B)(1,+)(C)(0,1) (D)1,+)3.(2013伊春模拟)在半径为R的半球内有一内接圆柱,则这个圆柱的体积的最大值是()(A)R3(B)R3(C)R3(D)R34.(2013重庆模拟)已知定义在R
2、上的可导函数f(x)的导函数为f(x),满足f(x)f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)ex的解集为( )(A)(-2,+)(B)(0,+)(C)(1,+)(D)(4,+)5.函数y=2x3+1的图象与函数y=3x2-b的图象有三个不相同的交点,则实数b的取值范围是()(A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2)6.(2013沈阳模拟)设f(x)是定义在R上的奇函数,且f(2)0,当x0时,有0的解集是( )(A)(2,0)(2,) (B)(2,0)(0,2)(C)(,2)(2,)(D)(,2)(0,2)二、填空题7.已知函数f(x)=xs
3、inx,xR,f(-4),f(),f()的大小关系为(用“g(x),f(x)-g(x)0,f(x)-g(x)在a,b上是增函数.f(a)-g(a)g(x)+f(a).2.【解析】选D.原不等式可化为lnx-px+10,令f(x)=lnx-px+1,故只需f(x)max0.由f(x)=-p,知f(x)在(0,)上单调递增,在(,+)上单调递减.故f(x)max=f()=-lnp,由-lnp0得p1.3.【解析】选A.设圆柱的高为h,则圆柱的底面半径为,圆柱的体积为V=(R2-h2)h=-h3+R2h(0hR),V=-3h2+R2=0,h=时V有最大值为V=R3.4.【解析】选B.因为f(x+2)
4、为偶函数,所以f(2-x)=f(x+2),因此f(0)=f(4)=1.令h(x)=,则原不等式即为h(x)h(0).又h(x)=,依题意f(x)f(x),故h(x)0,因此函数h(x)在R上是减函数,所以由h(x)h(0)得x0.5.【解析】选B.由题意知方程2x3+1=3x2-b,即2x3-3x2+1=-b有三个不相同的实数根,令f(x)=2x3-3x2+1,即函数y=f(x)=2x3-3x2+1与直线y=-b有三个交点.由f(x)=6x2-6x=6x(x-1)知,函数y=f(x)在区间(-,0)上单调递增,在(0,1)上单调递减,在(1,+)上单调递增,故f(0)是函数的极大值,f(1)是
5、函数的极小值,若函数y=f(x)=2x3-3x2+1与直线y=-b有三个交点,则f(1)-bf(0),解得-1b0时,有0,则0时单调递减,x2f(x)0,即为x300.f(2)0,画出y在x0时的示意图,知0x2.同理,由f(x)是奇函数,则y是偶函数,如图,在x0,即为x300.f(2)0,x2.综上所述,不等式的解集是(,2)(0,2).7.【解析】f(x)=sinx+xcosx,当x时,sinx0,cosx0,f(x)=sinx+xcosx0,则函数f(x)在x时为减函数,f()f(4)f(),又函数f(x)为偶函数,f()f(-4)f(-).答案:f()f(-4)f(-)8.【思路点
6、拨】关键是在0,2上任取三个不同的数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,三个不同的数a,b,c,对应的f(a),f(b),f(c)可以有两个相同.【解析】f(x)=x3-3x+m,f(x)=3x2-3,由f(x)=0得到x=1或x=-1,在0,2上,函数先减小后增加,计算两端及最小值f(0)=m,f(2)=2+m,f(1)=-2+m.在0,2上任取三个不同的数a,b,c,均存在以f(a),f(b),f(c)为边的三角形,三个不同的数a,b,c对应的f(a),f(b),f(c)可以有两个相同.由三角形两边之和大于第三边,可知最小边长的二倍必须大于最大边长.由题意知,f
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-476547.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
