广东省茂名地区2019-2020学年高二数学上学期期末考试试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省 茂名 地区 2019 2020 学年 数学 学期 期末考试 试题 解析
- 资源描述:
-
1、广东省茂名地区2019-2020学年高二数学上学期期末考试试题(含解析)一、选择题(每小题5分,共12小题,60分)1.已知向量及则等于( )A. B. C. D. 【答案】A【解析】【分析】根据空间向量加法运算,求得.【详解】依题意.故选:A【点睛】本小题主要考查空间向量加法的坐标运算,属于基础题.2.命题“对,都有”的否定为( )A. 对,都有B. ,使得C. ,使得D. ,使得【答案】C【解析】【分析】根据全称命题与特称命题的定义即可得出【详解】解:根据全称命题的否定是特称命题可得:命题“对,都有”的否定为“,使得”故选:【点睛】熟练掌握全称命题与特称命题的定义是解题的关键,属于基础题3
2、.设集合,则“”是“”的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】A【解析】当a1时,N1,此时有NM,则条件具有充分性;当NM时,有a21或a22得到a11,a21,a3,a4,故不具有必要性,所以“a1”是“NM”的充分不必要条件,选A.4.双曲线的焦点坐标是( )A. ,B. ,C. , D. ,【答案】B【解析】【分析】根据双曲线方程确定焦点位置,再根据求焦点坐标.【详解】因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.【点睛】由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.5.椭圆的离心率是( )A. B.
3、 C. D. 【答案】B【解析】【分析】由题可知,求出,即可求出椭圆的离心率【详解】因为椭圆中,所以,得,故选:B【点睛】本题考查椭圆的离心率的求法,以及灵活运用椭圆的简单性质化简求值6.已知向量.若,则x的值为( )A. B. 2C. 3D. 【答案】A【解析】【分析】先求解的坐标,再利用坐标表示向量垂直,列出等式,即得解【详解】,解得.故选:A【点睛】本题考查了空间向量垂直的坐标表示,考查了学生概念理解,数学运算能力,属于基础题7.椭圆和椭圆()有( )A. 等长的长轴B. 相等的焦距C. 相等的离心率D. 等长的短轴【答案】B【解析】【分析】判断出两个椭圆的焦点所在坐标轴,计算出两者的焦
4、距,由此判断出正确选项.【详解】依题意知椭圆的焦点在y轴上,椭圆的焦点在轴上.对于椭圆有:.对于椭圆有:焦距,所以两个椭圆有相等的焦距.长轴、短轴和离心率均不相等.故选:B【点睛】本小题主要考查椭圆的几何性质,属于基础题.8.过抛物线的焦点的直线交抛物线于、两点,如果,则 ( )A. 9B. 6C. 7D. 8【答案】D【解析】【分析】根据抛物线的方程,算出焦点为,准线方程为,利用抛物线的定义求得弦长,即可求解.【详解】由题意,抛物线的方程为,可得,所以抛物线的焦点为,准线方程为,根据抛物线的定义,可得,所以,又因为过抛物线的焦点,且,所以,故选D.【点睛】本题主要考查了抛物线的定义的应用,以
5、及抛物线的焦点弦问题,其中解答中熟记抛物线的定义,合理利用焦点弦的性质求解是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若AF1B的周长为,则C的方程为( )A. B. C. D. 【答案】A【解析】【详解】若AF1B的周长为4,由椭圆的定义可知,,所以方程为,故选A.考点:椭圆方程及性质10.已知椭圆以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为()A. B. C. 2D. 2【答案】A【解析】【分析】由于是弦的中点,根据点差法求出弦所在直线的斜率.【详解】设以为中点的弦的两个端
6、点分别为,所以由中点坐标公式可得,把两点坐标代入椭圆方程得两式相减可得所以,即所求的直线的斜率为.故选A项.【点睛】本题考查通过点差法求弦中点所在直线的斜率,属于中档题.11.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上点的任意一点,则的最大值为A. 2B. 3C. 6D. 8【答案】C【解析】【详解】由椭圆方程得F(1,0),设P(x0,y0),则(x0,y0)(x01,y0)x0P为椭圆上一点,1.x03x03(x02)22.2x02.的最大值在x02时取得,且最大值等于6.12.数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图).给出下列三个结论:曲线C恰好经过6个
7、整点(即横、纵坐标均为整数的点);曲线C上任意一点到原点的距离都不超过;曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论序号是A. B. C. D. 【答案】C【解析】【分析】将所给方程进行等价变形确定x的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.【详解】由得,所以可为的整数有0,-1,1,从而曲线恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论正确.由得,解得,所以曲线上任意一点到原点的距离都不超过. 结论正确.如图所示,易知,四边形的面积,很
8、明显“心形”区域的面积大于,即“心形”区域的面积大于3,说法错误.故选C.【点睛】本题考查曲线与方程曲线几何性质,基本不等式及其应用,属于难题,注重基础知识基本运算能力及分析问题解决问题的能力考查,渗透“美育思想”.二、填空题(每小题5分,共4小题,20分)13.抛物线的准线方程是_【答案】【解析】【分析】先根据抛物线的标准方程得到焦点在y轴上以及,再直接代入即可求出其准线方程.【详解】因为抛物线的标准方程为,焦点在y轴上,所以:,即,所以,所以准线方程为:,故答案是:.【点睛】该题考查的是有关抛物线的几何性质,涉及到的知识点是已知抛物线的标准方程求其准线方程,属于简单题目.14.已知椭圆焦点
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
