2021届高考数学一轮复习新人教A版教学案:第五章平面向量第1节平面向量的概念及线性运算 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届高考数学一轮复习新人教A版教学案:第五章平面向量第1节平面向量的概念及线性运算 WORD版含解析 2021
- 资源描述:
-
1、第1节平面向量的概念及线性运算考试要求1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.知 识 梳 理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的
2、向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:abba.(2)结合律:(ab)ca(bc)减法减去一个向量相当于加上这个向量的相反向量aba(b)数乘求实数与向量a的积的运算(1)|a|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0(a)a;()aaa;(ab)ab3.共线向量定理向量a(a0)与b共线的充要条件是存在唯一一个实数,使得ba.常用结论与微点提醒1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即,特别地, 一个
3、封闭图形,首尾连接而成的向量和为零向量.2.中点公式的向量形式:若P为线段AB的中点,O为平面内任一点,则().3.(,为实数),若点A,B,C共线,则1.4.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是考虑向量的方向;二是要特别注意零向量的特殊性,考虑零向量是否也满足条件.诊 断 自 测1.判断下列结论正误(在括号内打“”或“”)(1)|a|与|b|是否相等与a,b的方向无关.()(2)若ab,bc,则ac.()(3)向量与向量是共线向量,则A,B,C,D四点在一条直线上.()(4)当两个非零向量a,b共线时,一定有ba,反之成立.()解析(2)若b0,则a与c不一定平
4、行.(3)共线向量所在的直线可以重合,也可以平行,则A,B,C,D四点不一定在一条直线上.答案(1)(2)(3)(4)2.(老教材必修4P78T6改编)给出下列命题:零向量的长度为零,方向是任意的;若a,b都是单位向量,则ab;向量与相等.则所有正确命题的序号是()A. B. C. D.解析根据零向量的定义可知正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故错误;向量与互为相反向量,故错误.答案A3.(老教材必修4P92T5改编)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A. B.2 C.3 D.4解
5、析()()224.答案D4.(2020长沙检测)若四边形ABCD满足且|,则四边形ABCD的形状是()A.等腰梯形 B.矩形C.正方形 D.菱形解析因为,所以,且|,所以四边形ABCD为以AD为上底,BC为下底的梯形.又|,所以梯形ABCD的两腰相等.因此四边形ABCD是等腰梯形.答案A5.(2019西安调研)设a与b是两个不共线向量,且向量ab与(b2a)共线,则_.解析由已知2ab0,依题意知向量ab与2ab共线,设abk(2ab),则有(12k)a(k)b0,因为a,b是两个不共线向量,故a与b均不为零向量,所以解得k,.答案6.(2020昆明诊断)设D,E分别是ABC的边AB,BC上的
6、点,ADAB,BEBC.若12(1,2为实数),则12的值为_.解析(),1,2,即12.答案考点一平面向量的概念【例1】 (1)设a,b都是非零向量,下列四个条件中,一定能使0成立的是()A.a2b B.abC.ab D.ab(2)给出下列命题:若ab,bc,则ac;若A,B,C,D是不共线的四点,则是四边形ABCD为平行四边形的充要条件;ab的充要条件是|a|b|且ab.其中正确命题的序号是_.解析(1)由0得0,即a|a|0,则a与b共线且方向相反,因此当向量a与向量b共线且方向相反时,能使0成立.对照各个选项可知,选项A中a与b的方向相同;选项B中a与b共线,方向相同或相反;选项C中a
7、与b的方向相反;选项D中a与b互相垂直,因此选C.(2)正确.ab,a,b的长度相等且方向相同,又bc,b,c的长度相等且方向相同,a,c的长度相等且方向相同,故ac.正确.,|且,又A,B,C,D是不共线的四点,四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则且|,因此,.不正确.当ab且方向相反时,即使|a|b|,也不能得到ab,故|a|b|且ab不是ab的充要条件,而是必要不充分条件.答案(1)C(2)规律方法向量有关概念的四个关注点:(1)平行向量就是共线向量,二者是等价的;非零向量的平行具有传递性;相等向量一定是平行向量,而平行向量未必是相等向量;相等向量具有传递性
8、.(2)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,可以比较大小.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的平移混为一谈.(4)非零向量a与的关系:是与a同方向的单位向量.【训练1】 (1)如图,等腰梯形ABCD中,对角线AC与BD交于点P,点E,F分别在两腰AD,BC上,EF过点P,且EFAB,则下列等式中成立的是()A. B.C. D.(2)给出下列说法:非零向量a与b同向是ab的必要不充分条件;若与共线,则A,B,C三点在同一条直线上;a与b是非零向量,若a与b同向,则a与b反向;设,为实数,若ab,则a与b共线.其中错误说法
9、的序号是_.解析(1)根据相等向量的定义,分析可得与不平行,与不平行,所以,均错误,与平行,但方向相反也不相等,只有与方向相同,且大小都等于线段EF长度的一半,所以.(2)根据向量的有关概念可知正确,对于,当0时,a与b不一定共线,故错误.答案(1)D(2)考点二向量的线性运算多维探究角度1平面向量的加、减运算的几何意义【例21】 已知两个非零向量a,b满足|ab|ab|,则下列结论正确的是()A.ab B.abC.|a|b| D.abab解析由已知a,b不共线,在ABCD中,设a,b,由|ab|ab|,知|,从而四边形ABCD为矩形,即ABAD,故ab.答案B规律方法解题的关键:一是搞清各向
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-478933.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
医学考试-中医妇科学(十)-2.pdf
