2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试15导数的应用一含解析新人教B版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 第一 部分 考点 通关 第二 函数 导数 及其 应用 测试 15 解析 新人
- 资源描述:
-
1、考点测试15导数的应用(一)高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值5分、12分,中、高等难度考纲研读1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)3会用导数解决实际问题一、基础小题1函数f(x)1xsinx在(0,2)上是()A增函数B减函数C在(0,)上增,在(,2)上减D在(0,)上减,在(,2)上增答案A解析f(x)1cosx0,f
2、(x)在(0,2)上单调递增2函数f(x)x33x22在区间1,1上的最大值是()A2 B0 C2 D4答案C解析f(x)3x26x,令f(x)0,得x0或x2(舍去)所以f(x)在1,0)上是增函数,f(x)在(0,1上是减函数,所以当x0时,f(x)maxf(0)2.故选C.3已知函数f(x)2ef(e)ln x(e是自然对数的底数),则f(x)的极大值为()A2e1 B C1 D2ln 2答案D解析由题意知f(x),f(e),f(e),f(x),令f(x)0,得x2e,f(x)在(0,2e)上单调递增,在(2e,)上单调递减,f(x)的极大值为f(2e)2ln (2e)22ln 2,选D
3、.4已知函数f(x)x3ax2x1在(,)上是单调函数,则实数a的取值范围是()A,B(,)C(,)(,)D(,)答案A解析函数f(x)x3ax2x1的导函数为f(x)3x22ax1,且函数f(x)在(,)上是单调函数,在(,)上f(x)0恒成立,即3x22ax10恒成立,4a2120,解得a,实数a的取值范围是,故选A.5直线ya分别与曲线yex,yln x1交于两点M,N,则|MN|的最小值为()A1 B1ln 2 Cln 2 D1ln 2答案A解析分别令exa,ln x1a,其中a0,则x1ln a,x2ea1,从而|MN|x1x2|ln aea1|,构造函数h(a)ln aea1,求导
4、得h(a)ea1,当a(0,1)时,h(a)0,h(a)单调递增;当a(1,)时,h(a)f(a)f(c);函数f(x)在xc处取得极小值,在xe处取得极大值;函数f(x)在xc处取得极大值,在xe处取得极小值;函数f(x)的最小值为f(d)A B C D答案A解析由导函数图象可知在(,c),(e,)上,f(x)0,在(c,e)上,f(x)0,所以函数f(x)在(,c),(e,)上单调递增,在(c,e)上单调递减,所以f(a)f(b)f(e),错误故选A.7已知函数f(x)1ln x,存在x00,使得f(x0)0有解,则实数a的取值范围是()A(2,) B(,3)C(,1 D3,)答案C解析由
5、于函数f(x)的定义域是(0,),不等式f(x)1ln x0有解,即axxln x在(0,)上有解令h(x)xxln x,则h(x)1(ln x1)ln x,令h(x)0,得x1,当0x0;当x1时,h(x)0),所以f(x)ln xax,令g(x)ln xax,则g(x)a,当a0时,g(x)0恒成立,则f(x)在(0,)上单调递增,当x0时,f(x);当x时,f(x),所以f(x)只有一个极值点,不符合题意当a0时,可得f(x)有极大值点x,由于x0时f(x);当x时,f(x),因此原函数要有两个极值点,只要fln 10,解得0a0,a0,即a的取值范围是(,012(2018全国卷)已知函
6、数f(x)2sinxsin2x,则f(x)的最小值是_答案解析f(x)2cosx2cos2x4cos2x2cosx24(cosx1),所以当cosx时函数单调递减,当cosx时函数单调递增,从而得到函数的单调递减区间为(kZ),函数的单调递增区间为(kZ),所以当x2k,kZ时,函数f(x)取得最小值,此时sinx,sin2x,所以f(x)min2.13(2018江苏高考)若函数f(x)2x3ax21(aR)在(0,)内有且只有一个零点,则f(x)在1,1上的最大值与最小值的和为_答案3解析f(x)2x3ax21,f(x)6x22ax2x(3xa)若a0,则x0时,f(x)0,f(x)在(0,
7、)上为增函数,又f(0)1,f(x)在(0,)上没有零点,不符合题意,a0.当0x时,f(x)时,f(x)0,f(x)为增函数,x0时,f(x)有极小值,为f1.f(x)在(0,)内有且只有一个零点,f0,a3.f(x)2x33x21,则f(x)6x(x1)x1(1,0)0(0,1)1f(x)00f(x)4增1减0f(x)在1,1上的最大值为1,最小值为4.最大值与最小值的和为3.三、模拟小题14(2019河南郑州质检)函数f(x)x3ax2bxa2在x1时有极值10,则a,b的值为()Aa3,b3或a4,b11Ba4,b3或a4,b11Ca4,b11Da3,b3答案C解析由题意,得f(x)3
8、x22axb,则f(1)0,即2ab3.f(1)1aba210,即a2ab9.联立,解得(有极值)或(舍去,无极值)15(2019成都市高三第一次诊断考试)已知定义在R上的函数f(x)的图象关于直线xa(a0)对称,且当xa时,f(x)ex2a.若A,B是函数f(x)图象上的两个动点,点P(a,0),则当的最小值为0时,函数f(x)的最小值为()Ae Be1 Ce De2答案B解析当xa,则由函数f(x)的图象关于直线xa对称,得f(x)f(2ax)e(2ax)2aex,由此作出函数f(x)的图象,如图所示,则当取得最小值0时,直线PA,PB关于直线xa对称,且其中一直线的倾斜角为,此时A,B
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-479159.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
