山东省武城县第二中学人教B版高二数学习题 必修五《第三章 不等式》专题训练(无答案).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三章 不等式
- 资源描述:
-
1、高考资源网() 您身边的高考专家不等式专题训练一、关于不等式性质的问题:不等式的性质包括四个性质定理及五个推论,它是解不等式和证明不等式的主要依据.1对于实数,下列结论中正确的是()A若,则B若,则C若,则D若,则2下面四个条件中,使成立的条件是()ABCD3如果,那么下列不等式成立的是()ABCD4如果实数满足且,那么下列选项中不一定成立的是()ABCD二、关于利用不等式性质求取值范围问题:例1已知函数,求的取值范围.解:令可得即,+得,即仿照上例解以下几题.1(青岛模拟)已知,求的取值范围.2(辽宁高考)已知且,求取值范围.三、关于均值不等式条件考察问题(一正,二定,三相等)1下列结论正确
2、的是()A当且时,B当时,C当时,最小值是2D当时,无最大值2下列函数中,最小值为4的是()ABCD3下列函数中,最小值为2的是()ABCD4下列说法中,正确的是.的最小值为;最小值为2;的最小值为2.四、有关利用均值不等式求分式最值问题.例1求函数的最小值.(可分离变量化为型函数,利用均值不等式求解)解:令,则,所以即当且仅当,即,即时函数取最小值3.练习:1当时,求最小值.2求函数最小值及相应值.3求函数最大值及相应值.4求最大值及相应值.5求最小值及相应值.6已知,求最小值及相应值.五、有关给定一等式条件,求最值问题:例1已知且,求的最小值.解法一:,又,解法二:(代换法)解法三:(乘1
3、法)解法四:(减元法),则,练习:1.且,求最小值.2.已知正整数满足,当取得最小值时,试求实数对的取值.3.若,求的最小值.4.若且,求的最小值.5.若正数满足,求最小值.6.已知,求证:;.例2已知且,求的最大值及相应的值.解法一:当即取“”解法二:配凑法当且仅当,即,时取“”解法三:消元法由,得当,即时,取“”,此时练习:1若,求最大值.2点在直线上运动,求它的横纵坐标之积的最大值以及此时的坐标.3若且,求的取值范围.4中,已知,求的最大值.5已知,求的最小值.6已知,求最小值;求的最小值.六、有关运用均值不等式解应用题问题例:如下图,动物园要围成四间相同面积的长方形虎笼,一面可利用原有
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-480813.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
一年级上册语文课件-8 zh、ch、sh、r_人教(部编版)(2016).ppt
