《创新方案》2015高考数学(理)一轮突破热点题型:第2章 第2节 函数的单调性与最值.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新方案 创新方案2015高考数学理一轮突破热点题型:第2章 第2节函数的单调性与最值 创新 方案 2015 高考 数学 一轮 突破 热点 题型 函数 调性
- 资源描述:
-
1、第二节函数的单调性与最值 考点一函数单调性的判断与证明 例1已知函数f(x)ax,其中a0.(1)若2f(1)f(1),求a的值;(2)证明:当a1时,函数f(x)在区间0,)上为单调减函数自主解答(1)由2f(1)f(1),可得22a a,所以a.(2)证明:任取x1,x20,),且x1x2,f(x1)f(x2) ax1 ax2 a(x1x2)a(x1x2)(x1x2).0x1 ,0x2 ,00,f(x)在区间0,)上为单调减函数【方法规律】利用定义证明函数单调性的步骤试讨论函数f(x),x(1,1)的单调性(其中a0)解:设1x1x21,则f(x1)f(x2).1x1x21,x2x10,x
2、10,x10,1x1x21,x1x210.0.因此,当a0时,f(x1)f(x2)0,f(x1)f(x2),此时函数在(1,1)上为减函数;当a0时,f(x1)f(x2)0,f(x1)f(x2),此时函数在(1,1)上为增函数考点二求函数的单调区间 例2求下列函数的单调区间:(1)yx22|x|1;(2)ylog(x23x2)自主解答(1)由于y即y画出函数图象如图所示,单调递增区间为(,1和0,1,单调递减区间为1,0和1,)(2)令ux23x2,则原函数可以看作ylogu与ux23x2的复合函数令ux23x20,则x1或x2.函数ylog(x23x2)的定义域为(,1)(2,)又ux23x
3、2的对称轴x,且开口向上ux23x2在(,1)上是单调减函数,在(2,)上是单调增函数而ylogu在(0,)上是单调减函数,ylog(x23x2)的单调减区间为(2,),单调增区间为(,1)【互动探究】若将本例(1)中的函数变为“y|x22x1|”,则结论如何?解:函数y|x22x1|的图象如图所示由图象可知,函数y|x22x1|的单调递增区间为(1,1)和(1,);单调递减区间为(,1)和(1,1)【方法规律】函数单调区间的求法(1)函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数
4、函数等(2)如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间求函数y的单调区间解:令ux2x6,y可以看作y与ux2x6的复合函数由ux2x60,得x3或x2.ux2x6在(,3上是减函数,在2,)上是增函数,而y在(0,)上是增函数y的单调减区间为(,3,单调增区间为2,)高频考点考点三 函数单调性的应用1高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中2高考对函数单调性的考查主要有以下几个命题角度:(1)利用函数的单调性比较大小;(2)利用函数的单调性解决与抽象函数有关的不等式
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-481294.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
冀教版七年级英语上册Unit 6 Lesson 33《Let’s Go to the Zoo》(共17张PPT).ppt
