分享
分享赚钱 收藏 举报 版权申诉 / 6

类型《创新方案》2015高考数学(理)一轮突破热点题型:第8章 第7节 抛 物 线.doc

  • 上传人:a****
  • 文档编号:481360
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:6
  • 大小:236KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    创新方案 创新方案2015高考数学理一轮突破热点题型:第8章 第7节抛 创新 方案 2015 高考 数学 一轮 突破 热点 题型
    资源描述:

    1、高考资源网( ),您身边的高考专家第七节抛 物 线 考点一抛物线的定义及应用 例1设P是抛物线y24x上的一个动点(1)求点P到点A(1,1)的距离与点P到直线x1的距离之和的最小值;(2)若B(3,2),求|PB|PF|的最小值自主解答(1)如图,易知抛物线的焦点为F(1,0),准线是x1.由抛物线的定义知:点P到直线x1的距离等于点P到焦点F的距离于是,问题转化为:在曲线上求一点P,使点P到点A(1,1)的距离与点P到F(1,0)的距离之和最小显然,连接AF交曲线于点P,则所求的最小值为|AF|,即为.(2)如图,过点B作BQ垂直准线于Q,交抛物线于点P1,则|P1Q|P1F|.则有|PB

    2、|PF|P1B|P1Q|BQ|4.即|PB|PF|的最小值为4.【互动探究】若将本例(2)中的B点坐标改为(3,4),求|PB|PF|的最小值解:由题意可知点(3,4)在抛物线的外部|PB|PF|的最小值即为B,F两点间的距离|PB|PF|BF|2.即|PB|PF|的最小值为2. 【方法规律】抛物线定义中的“转化”法利用抛物线的定义解决此类问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化“看到准线想到焦点,看到焦点想到准线”,这是解决抛物线焦点弦有关问题的有效途径1(2014天津模拟)已知动圆过定点F,且与直线x相切,其中p0,则动圆圆心的轨迹E的方程为_解析:依题意得,圆心到

    3、定点F的距离与到直线x的距离相等,再依抛物线的定义知,动圆圆心的轨迹E为抛物线,其方程为y22px.答案:y22px2过抛物线y24x的焦点F的直线交该抛物线于A,B两点,若|AF|3,则|BF|_.解析:因为抛物线y24x的焦点F(1,0)显然,当AB垂直于x轴时,|AF|3,所以AB的斜率k存在,设AB的方程为yk(x1),与抛物线y24x联立,消去y得k2x22k2x4xk20,即k2x2(2k24)xk20,设A(x1,y1),B(x2,y2)由根与系数的关系得x1x22.又|AF|3x1x11,所以x12,代入k2x22k2x4xk20,得k28,所以x1x2,x2,故|BF|x21

    4、1.答案:考点二抛物线的标准方程及性质 例2(1)(2013四川高考)抛物线y24x的焦点到双曲线x21的渐近线的距离是()A. B. C1 D.(2)(2013江西高考)抛物线x22py(p0)的焦点为F,其准线与双曲线1相交于A,B两点,若ABF为等边三角形,则p_.自主解答(1)由抛物线y24x,有2p4,p2.其焦点坐标为(1,0),双曲线x21的渐近线方程为yx.不妨取其中一条xy0.由点到直线的距离公式有d.(2)在等边三角形ABF中,AB边上的高为p,p,所以B.又因为点B在双曲线上,故1,解得p6.答案:(1)B(2)6【方法规律】1求抛物线的标准方程的方法及流程(1)方法:求

    5、抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可(2)流程:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量2确定及应用抛物线性质的关键与技巧(1)关键:利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程(2)技巧:要结合图形分析,灵活运用平面几何的性质以图助解1已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0)若点M到该抛物线焦点的距离为3,则|OM|()A2 B2 C4 D2解析:选B依题意,设抛物线方程是y22px(p0),则有23,得p2,故抛物线方程是y24x,点M的坐标是(2,2),|OM

    6、|2.2(2014湖州模拟)已知双曲线C1:1(a0,b0)的离心率为2.若抛物线C2:x22py(p0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()Ax2y Bx2yCx28y Dx216y解析:选D双曲线的渐近线方程为yx,由于 2,所以,所以双曲线的渐近线方程为yx.抛物线的焦点坐标为,所以2,则p8,所以抛物线方程为x216y.高频考点考点三 直线与抛物线的位置关系1直线与抛物线的位置关系,是高考命题的热点,多以解答题的形式出现,试题难度较大,多为中、高档题2直线与抛物线的位置关系有以下几个命题角度:(1)已知抛物线方程及其他条件,求直线方程;(2)证明直线过定点;(

    7、3)求线段长度或线段之积(和)的最值;(4)求定值例3(2014杭州模拟)已知直线y2x2与抛物线x22py(p0)交于M1,M2两点,且|M1M2|8.(1)求p的值;(2)设A是直线y上一点,直线AM2交抛物线于另一点M3,直线M1M3交直线y于点B,求的值 自主解答(1)由整理得x24px4p0,设M1(x1,y1),M2(x2,y2),则|M1M2|8,8,即8.p2p120,解得p4或p3(舍去),且p4满足0,p4.(2)由(1)知抛物线方程为x28y,且x1x216,x1x216,M1,M2,设M3,A(t,2),B(a,2),由A,M2,M3三点共线得kM2M3kAM2,即xx

    8、2x3t(x2x3)x16,整理得x2x3t(x2x3)16,由B,M3,M1三点共线,同理可得x1x3a(x1x3)16,式两边同乘x2得x1x2x3a(x1x2x2x3)16x2,即16x3a(16x2x3)16x2,由得x2x3t(x2x3)16,代入得16x316aat(x2x3)16a16x2,即16(x2x3)at(x2x3),at16.at420.直线与抛物线的位置关系的常见类型及解题策略(1)求直线方程先寻找确定直线的两个条件,若缺少一个可设出此量,利用题设条件寻找关于该量的方程,解方程即可(2)证明直线过定点可依题设条件寻找该直线的方程,可依据方程中的参数及其他条件确定该直线

    9、过那个定点(3)求线段长度和线段之积(和)的最值可依据直线与抛物线相交,依据弦长公式,求出弦长或弦长关于某个量的函数,然后利用基本不等式或利用函数的知识,求函数的最值;也可利用抛物线的定义转化为两点间的距离或点到直线的距离(4)求定值可借助于已知条件,将直线与抛物线联立,寻找待定式子的表达式,化简即可得到(2014潍坊模拟)已知过点A(4,0)的动直线l与抛物线G:x22py(p0)相交于B,C两点当直线l的斜率是时,4.(1)求抛物线G的方程;(2)设线段BC的中垂线在y轴上的截距为b,求b的取值范围解:(1)设B(x1,y1),C(x2,y2),当直线l的斜率是时,l的方程为y(x4),即

    10、x2y4,联立消去x,得2y2(8p)y80,y1y2,y1y24,由已知4,y24y1,由韦达定理及p0可得y11,y24,p2,抛物线G的方程为x24y.(2)由题意知直线l的斜率存在,且不为0,设l:yk(x4),BC中点坐标为(x0,y0),由得x24kx16k0,由0得k0,x02k,y0k(x04)2k24k,BC中垂线方程为y2k24k(x2k),b2(k1)2,b2.故b的取值范围为(2,)课堂归纳通法领悟4个结论直线与抛物线相交的四个结论已知抛物线y22px(p0),过其焦点的直线交抛物线于A,B两点,设A(x1,y1),B(x2,y2),则有以下结论:(1)|AB|x1x2p或|AB|(为AB所在直线的倾斜角);(2)x1x2;(3)y1y2p2;(4)过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p.3个注意点抛物线问题的三个注意点(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程(2)注意应用抛物线定义中距离相等的转化来解决问题(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点欢迎广大教师踊跃来稿,稿酬丰厚。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《创新方案》2015高考数学(理)一轮突破热点题型:第8章 第7节 抛 物 线.doc
    链接地址:https://www.ketangku.com/wenku/file-481360.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1