小学数学排列组合计算公式.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 排列组合 计算 公式
- 资源描述:
-
1、小学数学排列组合计算公式如何把小学各门基础学科学好大概是很多学生都发愁的问题,查字典数学网为大家提供了排列组合计算公式,希望同学们多多积累,不断进步!排列 P-和顺序有关组合 C -不牵涉到顺序的问题排列分顺序,组合不分例如 把5本不同的书分给3个人,有几种分法. 排列把5本书分给3个人,有几种分法 组合1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1
2、)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/(n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,.nk这n个元素的全排列数为n!/(n1!*n2!*.*nk!).k类元素,每类的个
3、数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标)Pnm=n(n-1).(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标)Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2019-07-08 13:30公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数 R参与选择的元素个数
4、 !-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2).(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于排列P计算范畴。上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有
5、从1到9共计9个号码球,请问,如果三个一组,代表三国联盟,可以组合成多少个三国联盟?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于组合C计算范畴。上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有 种不同方法.(
6、2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有 种不同方法.点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中 不排第一, 不排第二, 不排第三, 不排第四的不同排法共有多少种?解 依题意,符合要求的排法可分为第一个排 、 、 中的某一个,共3类,每一类中不同排法可采用画树图的方式逐一排出:符合题意的不同排法共有9种.点评 按照分类的思路,本题应用了加法原理.为把握不同排法的规律,树图是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3 判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022年高二语文 晨读晚练 第一周 人生憧憬-战争和平课件.ppt
