小学数学数学故事真实的虚数.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 故事 真实 虚数
- 资源描述:
-
1、真实的虚数“虚数”这个名词,使人觉得挺玄乎,好像有点“虚”,实际上它的内容却非常“实”。虚数是在解方程时产生的。求解方程时,常常需要将数开方,如果被开方数是正数,就可以算出要求的根;但如果被开方数是负数,那怎么办呢?早以前,大多数人都认为负数是没有平方根的。到了16世纪,意大利数学家的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其几何学中第一次给出“虚数”的名称,并和“实数”相对应。直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复
2、数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。真是:虚数不虚!虚数的发展说明了:许多数学概念的产生并不直接来自实践,而是来自思维,但只有在实际生活中有了用处时,这些概念才能被接受而获得发展。
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
