分享
分享赚钱 收藏 举报 版权申诉 / 37

类型高中数学人教A版 必修一同步课件:1-3-2第2课时习题课 .ppt

  • 上传人:a****
  • 文档编号:484315
  • 上传时间:2025-12-08
  • 格式:PPT
  • 页数:37
  • 大小:1.63MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学人教A版 必修一同步课件:1-3-2第2课时习题课 高中 学人 必修 一同 课件 课时 习题
    资源描述:

    1、集合与函数的概念第一章1.3 函数的基本性质第一章1.3.2 奇偶性第二课时 习题课题 型 讲 解2课 时 作 业4知 识 整 合1当 堂 检 测3知 识 整 合网络构建(1)判断函数单调性的步骤:任取x1,x2R,且x1x2;作差:f(x1)f(x2);变形(通分、配方、因式分解);判断差的符号,下结论(2)求函数单调性要先确定函数的定义域(3)若f(x)为增(减)函数,则f(x)为减(增)函数(4)复合函数yf(g(x)的单调性遵循“同增异减”的原则规律小结(5)奇函数的性质:图象关于原点对称;在关于原点对称的区间上单调性相同;若在x0处有定义,则有f(0)0.(6)偶函数的性质:图象关于

    2、y轴对称;在关于原点对称的区间上单调性相反;f(x)f(x)f(|x|)(7)若奇函数f(x)在a,b上有最大值M,则在区间b,a上有最小值M;若偶函数f(x)在a,b上有最大值m,则在区间b,a上也有最大值m.题 型 讲 解探究1.如果分段函数为定义域上的减函数,那么在每个分段区间内的单调性是怎样的?探究2.要保证分段函数在整个定义域内单调递减,需要满足什么条件?函数单调性的应用解析由x1时,f(x)x22ax2a是减函数,得a1;由x1时,函数f(x)ax1是减函数,得a0.分段点x1处的值应满足122a12a1a1,解得a2.所以2a0.答案B规律总结在应用分段函数整体的单调性求解参数的

    3、取值范围时,不仅要保证分段函数的每一段上的函数是单调的,而且还要求函数的特殊点分段点处的值,也要结合函数的单调性比较大小,如本例中的分段点x1,即需要在此处列出满足题意的关系式,求出a的限制条件分析利用偶函数的对称性,先求a0时,a值再求a0时a值奇偶性的应用(2011浙江)若函数f(x)x2|xa|为偶函数,则实数a_.答案0分析逆用偶函数的定义求a.解析显然xR,由已知得f(x)(x)2|xa|x2|xa|,又f(x)为偶函数,所以f(x)f(x),即x2|xa|x2|xa|,即|xa|xa|,又xR,所以a0.已知ba0,偶函数yf(x)在区间b,a上是增函数,问函数yf(x)在区间a,

    4、b上是增函数还是减函数?探究1.若本例中的偶函数改为奇函数单调性如何?你会证明吗?分析由函数的奇偶性进行转化奇(偶)函数在关于原点对称的两个区间上的单调性解析设ax1x2b,则bx2x1a.f(x)在b,a上是增函数f(x2)f(x1)又f(x)是偶函数,f(x1)f(x1),f(x2)f(x2)于是 f(x2)f(x1),故f(x)在a,b上是减函数点评由函数单调性和奇偶性的定义,可以证明在关于原点对称的两个区间上,偶函数的单调性恰是相反的,奇函数的单调性是相同的规律总结函数的单调性与奇偶性的关系(1)若f(x)是奇函数,则f(x)在其关于原点对称的区间上单调性一致;若f(x)是偶函数,则f

    5、(x)在其关于原点对称的区间上单调性相反(2)奇函数在对称区间上的最值相反,且互为相反数;偶函数在对称区间上的最值相等(1)已知函数yf(x)是定义在R上的偶函数,在2,6上是减函数,比较f(5)与f(3)的大小(2)如果奇函数f(x)在区间1,6上是增函数,且最大值为10,最小值为4,那么f(x)在6,1上是增函数还是减函数?求f(x)在6,1上的最大值和最小值解析(1)f(x)是偶函数,f(5)f(5),f(x)在2,6上是减函数,f(5)f(3),f(5)f(3)(2)设6x1x21,则1x2x16,f(x)在1,6上是增函数且最大值为10,最小值为4,4f(1)f(x2)f(x1)f(

    6、6)10,又f(x)为奇函数,4f(x2)f(x1)10,10f(x1)f(x2)4,即f(x)在6,1上是增函数,且最小值为10,最大值为4.(2015河南淇县一中月考试题)若函数f(x)是定义在R上的偶函数,在(,0上是减函数,且f(2)0,则使得f(x)0时,f(x)0时,f(x)0,对其中的x,y不断赋值解析(1)令yx,得fx(x)f(x)f(x),f(x)f(x)f(0)又f(00)f(0)f(0),f(0)0,f(x)f(x)0,f(x)f(x),f(x)是奇函数(2)任取x1,x2R,且x1x2,则f(x1)f(x2)f(x1)fx1(x2x1)f(x1)f(x1)f(x2x1

    7、)f(x2x1)x10,又当x0时,f(x)0,f(x2x1)0,即f(x1)f(x2),从而f(x)在R上是减函数(3)f(x)在R上是减函数f(x)在3,3上的最大值是f(3),最小值是f(3)f(3)f(1)f(2)3f(1)3(2)6,f(3)f(3)6.从而f(x)在区间3,3上的最大值是6,最小值是6.规律总结对抽象函数的奇偶性与单调性的证明,围绕证明奇偶性与单调性所需要的关系式,对所给的函数关系式赋值函数f(x)的定义域为Dx|x0,且满足对于任意x1,x2D,有f(x1x2)f(x1)f(x2)(1)求f(1)的值;(2)判断f(x)的奇偶性并证明;(3)如果f(4)1,f(3

    8、x1)3,且f(x)在(0,)上是增函数,求x的取值范围解析(1)令x1x21,得f(11)f(1)f(1),解得f(1)0.当 堂 检 测1如果偶函数在2,1上有最大值,那么该函数在1,2上()A有最大值B有最小值C没有最大值D没有最小值答案A解析偶函数图象关于y轴对称,如果在2,1上有最大值,那么该函数在1,2上也有最大值2函数f(x)在区间(4,7)上是增函数,则使得yf(x3)为增函数的区间为()A(2,3)B(1,7)C(1,10)D(10,4)答案C解析yf(x3)的图象可以由f(x)的图象向右平移8个单位得到,故其在(1,10)上一定为增函数4已知函数f(x)是定义在R上的奇函数

    9、,给出下列命题:f(0)0;若f(x)在0,)上有最小值1,则f(x)在(,0)上有最大值1;若f(x)在1,)上为增函数,则f(x)在(,1上为减函数;若x0时,f(x)x22x,则x0时,f(x)x22x.其中正确结论的序号是:_.答案解析根据奇函数的定义与性质一一验证即可5(2015河南淇县一中月考试题)已知函数f(x)x24x3.(1)若g(x)f(x)bx为偶函数,求b;(2)求函数f(x)在3,3上的最大值解析(1)g(x)f(x)bxx2(b4)x3,g(x)x2(b4)x3,g(x)g(x),b40,b4.(2)f(x)x24x3关于直线x2对称,因此f(x)在x2取得最小值1,在x3取得最大值24.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学人教A版 必修一同步课件:1-3-2第2课时习题课 .ppt
    链接地址:https://www.ketangku.com/wenku/file-484315.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1