《创新设计》2015-2016学年高中数学(苏教版选修2-1)学案:第2章 圆锥曲线与方程 2.2(二).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新设计2015-2016学年高中数学苏教版选修2-1学案:第2章 圆锥曲线与方程 2.2二 创新 设计 2015 2016 学年 高中数学 苏教版 选修 圆锥曲线 方程 2.2
- 资源描述:
-
1、22.2椭圆的几何性质(二)学习目标1.进一步巩固椭圆的几何性质.2.掌握直线与椭圆位置关系的相关知识知识链接已知直线和椭圆的方程,怎样判断直线与椭圆的位置关系?答:直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的解的个数来确定,通常用消元后的关于x(或y)的一元二次方程的根的判别式来判断0直线和椭圆相交;0直线和椭圆相切;b0)的位置关系点P在椭圆上1;点P在椭圆内部1.2直线与椭圆的位置关系直线ykxm与椭圆1(ab0)的位置关系判断方法:联立消y得到一个关于x的一元二次方程.位置关系解的个数的取值相交两解0相切一解0相离无解b0)或1(ab0),直线与椭圆的两个交点为A(
2、x1,y1),B(x2,y2),则AB.或AB.其中,x1x2,x1x2或y1y2,y1y2的值,可通过由直线方程与椭圆方程联立消去y(或x)后得到关于x(或y)的一元二次方程得到要点一直线与椭圆的位置关系例1在椭圆1上求一点P,使它到直线l:3x2y160的距离最短,并求出最短距离解设与椭圆相切并与l平行的直线方程为yxm,代入1,并整理得4x23mxm270,9m216(m27)0m216m4,故两切线方程为yx4和yx4,显然yx4距l最近d,切点为P.规律方法本题通过对图形的观察分析,将求最小距离问题转化为直线与椭圆的位置关系问题解此类问题的常规解法是直线方程与椭圆方程联立,消去y或x
3、得到关于x或y的一元二次方程,则(1)直线与椭圆相交0;(2)直线与椭圆相切0;(3)直线与椭圆相离0.这时直线的方程为y2(x4),即x2y80.方法二设A(x1,y1),B(x2,y2),则有两式相减得0,整理得kAB,由于P(4,2)是AB的中点,所以x1x28,y1y24,于是kAB,于是直线AB的方程为y2(x4),即x2y80.要点三椭圆中的最值(或范围)问题例3已知椭圆4x2y21及直线yxm.(1)当直线和椭圆有公共点时,求实数m的取值范围;(2)求被椭圆截得的最长弦所在的直线方程解(1)由得5x22mxm210,因为直线与椭圆有公共点,所以4m220(m21)0,解得m.(2
4、)设直线与椭圆交于A(x1,y1),B(x2,y2)两点,由(1)知:5x22mxm210,所以x1x2,x1x2(m21),所以AB.所以当m0时,AB最大,此时直线方程为yx.规律方法解析几何中的综合性问题很多而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件跟踪演练3如图,点A是椭圆C:1(ab0)的短轴位于y轴下方的端点,过点A且斜率为1的直线交椭圆于点B,若P在y轴上,且BPx轴,9
5、.(1)若点P的坐标为(0,1),求椭圆C的标准方程;(2)若点P的坐标为(0,t),求t的取值范围解直线AB的斜率为1,BAP45,即BAP是等腰直角三角形,|.9,|cos45|2cos459,|3.(1)P(0,1),|1,|2,即b2,且B(3,1)B在椭圆上,1,得a212,椭圆C的标准方程为1.(2)由点P的坐标为(0,t)及点A位于x轴下方,得点A的坐标为(0,t3),t3b,即b3t.显然点B的坐标是(3,t),将它代入椭圆方程得:1,解得a2.a2b20,(3t)20.1,即10,所求t的取值范围是0t0,m1或m0,m1且m3.3如图所示,直线l:x2y20过椭圆的左焦点F
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-485925.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
