《创新设计》2016届 数学一轮(理科) 人教A版 课时作业 第八章 立体几何-4 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新设计2016届 数学一轮理科 人教A版 课时作业 第八章 立体几何-4 创新 设计 2016 数学 一轮 理科 人教 课时 作业 第八 立体几何
- 资源描述:
-
1、高考资源网() 您身边的高考专家第4讲直线、平面垂直的判定与性质基础巩固题组(建议用时:40分钟)一、选择题1已知平面平面,l,点A,Al,直线ABl,直线ACl,直线m,m,则下列四种位置关系中,不一定成立的是()AABm BACmCAB DAC解析如图所示,ABlm;ACl,mlACm;ABlAB,只有D不一定成立,故选D.答案D2设a是空间中的一条直线,是空间中的一个平面,则下列说法正确的是()A过a一定存在平面,使得B过a一定存在平面,使得C在平面内一定不存在直线b,使得abD在平面内一定不存在直线b,使得ab解析当a与相交时,不存在过a的平面,使得,故A错误;直线a与其在平面内的投影
2、所确定的平面满足,故选B;平面内的直线b只要垂直于直线a在平面内的投影,则就必然垂直于直线a,故C错误;当a与平行时,在平面内存在直线b,使得ab,故D错误答案B3. 如图,已知ABC为直角三角形,其中ACB90,M为AB的中点,PM垂直于ABC所在平面,那么()APAPBPCBPAPBPCCPAPBPCDPAPBPC解析M为AB的中点,ACB为直角三角形,BMAMCM,又PM平面ABC,RtPMBRtPMARtPMC,故PAPBPC.答案C4(2015青岛质量检测)设a,b是两条不同的直线,是两个不同的平面,则能得出ab的是()Aa,b, Ba,b,Ca,b, Da,b,解析A中,两直线可以
3、平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由,a可得a,又b,得ab,故正确;D中,两直线可以平行,相交或异面,故不正确答案C5.(2015深圳调研)如图,在四面体DABC中,若ABCB,ADCD,E是AC的中点,则下列正确的是()A平面ABC平面ABDB平面ABD平面BDCC平面ABC平面BDE,且平面ADC平面BDED平面ABC平面ADC,且平面ADC平面BDE解析因为ABCB,且E是AC的中点,所以BEAC,同理有DEAC,于是AC平面BDE.因为AC平面ABC,所以平面ABC平面BDE.又由于AC平面ACD,所以平面ACD平面BDE,所以选C.答案C二、填空题6.
4、如图,PA圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:AFPB;EFPB;AFBC;AE平面PBC.其中正确结论的序号是_解析由题意知PA平面ABC,PABC.又ACBC,且PAACA,BC平面PAC,BCAF.AFPC,且BCPCC,AF平面PBC,AFPB,AFBC.又AEPB,AEAFA,PB平面AEF,PBEF.故正确答案7如图,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD(只要填写一个你认为正确的条件即可)解析PC在底面ABCD上的射影为AC,且ACBD
5、,BDPC.当DMPC(或BMPC)时,即有PC平面MBD,而PC平面PCD,平面MBD平面PCD.答案DMPC(或BMPC)8设,是空间两个不同的平面,m,n是平面及外的两条不同直线从“mn;n;m”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:_(用代号表示)解析假如为条件,即mn,n,m成立,过m上一点P作PBn,则PBm,PB,设垂足为B.又设m,垂足为A,过PA,PB的平面与,的交线l交于点C.因为lPA,lPB,所以l平面PAB,所以lAC,lBC.所以ACB是二面角l的平面角由mn,显然PAPB,所以ACB90,所以.由成立反过来,如果成立,与上面证法类似可得成
6、立答案()三、解答题9.(2014包头市学业水平测试)如图,在直三棱柱ABCA1B1C1中,AA12AC2BC,D是棱AA1的中点,CDB1D.(1)证明:CDB1C1;(2)平面CDB1分此棱柱为两部分,求这两部分体积的比(1)证明由题设知,三棱柱的侧面为矩形,由于D为AA1的中点,故DCDC1,又AA12A1C1,可得DCDC2CC,所以CDDC1,而CDB1D,B1DC1DD,所以CD平面B1C1D,因为B1C1平面B1C1D,所以CDB1C1.(2)解由(1)知B1C1CD,且B1C1C1C,C1CCDC,则B1C1平面ACC1A1,设V1是平面CDB1上方部分的体积,V2是平面CDB
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-488799.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
