《加练半小时》2018版高考数学(江苏专用理科)专题复习:专题专题3 导数及其应用 第22练 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 加练半小时
- 资源描述:
-
1、训练目标(1)利用导数处理与函数零点有关的题型;(2)解题步骤的规范训练训练题型(1)利用导数讨论零点的个数;(2)利用导数证明零点的唯一性;(3)根据零点个数借助导数求参数范围解题策略(1)注重数形结合;(2)借助零点存在性定理处理零点的存在性问题;结合单调性处理零点的唯一性问题;(3)注意参变量分离.1(2015广东)设a1,函数f(x)(1x2)exa.(1)求f(x)的单调区间;(2)证明:f(x)在(,)上仅有一个零点2函数f(x)x3kx,其中实数k为常数(1)当k4时,求函数的单调区间;(2)若曲线yf(x)与直线yk只有一个交点,求实数k的取值范围3(2016南京、盐城、徐州二
2、模)已知函数f(x)1lnx,其中k为常数(1)若k0,求曲线yf(x)在点(1,f(1)处的切线方程;(2)若k5,求证:f(x)有且仅有两个零点;(3)若k为整数,且当x2时,f(x)0恒成立,求k的最大值(参考数据ln82.08,ln92.20,ln102.30)4(2015山东)设函数f(x)(xa)lnx,g(x).已知曲线yf(x) 在点(1,f(1)处的切线与直线2xy0平行(1)求a的值;(2)是否存在自然数k,使得方程f(x)g(x)在(k,k1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由5已知函数f(x)(xa)ex,其中e是自然对数的底数,aR.(1)求函数
3、f(x)的单调区间;(2)当a1时,试确定函数g(x)f(xa)x2的零点个数,并说明理由答案精析1(1)解f(x)2xex(1x2)ex(x22x1)ex(x1)2ex,xR,f(x)0恒成立f(x)的单调递增区间为(,)(2)证明f(0)1a,f(a)(1a2)eaa,a1,f(0)0,f(a)2aeaa2aaa0,f(0)f(a)0,f(x)在(0,a)上有一个零点,又f(x)在(,)上递增,f(x)在(0,a)上仅有一个零点,f(x)在(,)上仅有一个零点2解(1)因为f(x)x2k,当k4时,f(x)x24,令f(x)x240,所以x12,x22.f(x)、f(x)随x的变化情况如下
4、表:x(,2)2(2,2)2(2,)f(x)00f(x)极大值极小值所以f(x)的单调递增区间是(,2),(2,);单调递减区间是(2,2)(2)令g(x)f(x)k,由题意知,g(x)只有一个零点因为g(x)f(x)x2k.当k0时,g(x)x3,所以g(x)只有一个零点0.当k0时,g(x)x2k0对xR恒成立,所以g(x)单调递增,所以g(x)只有一个零点当k0时,令g(x)f(x)x2k0,解得x1或x2.g(x),g(x)随x的变化情况如下表:x(,)(,)(,)g(x)00g(x)极大值极小值g(x)有且仅有一个零点等价于g()0,即kk0,解得0k.综上所述,k的取值范围是k.3
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-492007.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2021年高考英语二轮复习话题背景与写作最后30天冲刺第2篇倒数第30天2020年高考不可不知的熟词生义PDF.pdf
