广西桂林市第十八中学2020-2021学年高二数学上学期期中试题 理(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广西桂林市第十八中学2020-2021学年高二数学上学期期中试题 理含解析 广西 桂林市 第十八 中学 2020 2021 学年 数学 学期 期中 试题 解析
- 资源描述:
-
1、广西桂林市第十八中学2020-2021学年高二数学上学期期中试题 理(含解析)注意事项:本试卷共4页,答题卡2页考试时间120分钟,满分150分;正式开考前,请务必将自己的姓名、考号用黑色水性笔填写清楚并张贴条形码;请将所有答案填涂或填写在答题卡相应位置,直接在试卷上做答不得分第卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,有且只有一项是符合题目要求的1. 已知,则( )A. B. C. D. 【答案】D【解析】【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果.【详解】因为,所以.故选:D.2. 命题“若”,则否命题是( )A. “若
2、,则”B. “若,则”C. “若,则”D. “若,则”【答案】A【解析】【分析】根据否命题的转化规则,进行转化并选择即可.【详解】根据否命题的要求,需要将条件和结论都要否定,故命题:若,则的否命题是:若,则.故选:A.【点睛】本题考查命题的否命题的求解,注意条件和结论都要进行否定.3. 双曲线的渐近线方程是( )A. B. C. D. 【答案】D【解析】【分析】依据双曲线性质,即可求出【详解】由双曲线得, ,即 ,所以双曲线的渐近线方程是,故选D【点睛】本题主要考查如何由双曲线方程求其渐近线方程,一般地双曲线的渐近线方程是;双曲线的渐近线方程是4. 已知向量,则( )A. 3B. 5C. 9D
3、. 25【答案】B【解析】【分析】根据向量的坐标运算即可求解.【详解】解:,故选:B.5. 等差数列的前项和为,且,则( )A. B. C. D. 【答案】B【解析】【分析】【详解】等差数列的前项和为,且, 解得 故选B【点睛】本题考查等差数列的第二项的求法,是基础题,解题时要注意等差数列的通项公式的合理运用6. 已知,则a, b, c的大小关系为( )A. B. C. D. 【答案】A【解析】【分析】【详解】试题分析:因为,所以由指数函数的性质可得,因此,故选A.考点:1、指数函数的性质;2、对数函数的性质及多个数比较大小问题.【方法点睛】本题主要考查指数函数的性质、对数函数的性质以及多个数
4、比较大小问题,属于中档题. 多个数比较大小问题能综合考查多个函数的性质以及不等式的性质,所以也是常常是命题的热点,对于这类问题,解答步骤如下:(1)分组,先根据函数的性质将所给数据以为界分组;(2)比较,每一组内数据根据不同函数的单调性比较大小;(3)整理,将各个数按顺序排列.7. 的内角的对边分别为,若,则( )A. B. C. 3D. 【答案】B【解析】【分析】用余弦定理求解【详解】由余弦定理,得解得(舍去)故选:B8. 已知命题, 且,命题,.下列命题是真命题的是( )A. B. C. D. 【答案】A【解析】对于命题,当时,且成立,故命题为真命题;对于命题,其最大值为,故,为真命题,由
5、以上可得为真,故选A.9. 设等比数列的前n项和为,若,则( )A. B. C. D. 【答案】A【解析】【分析】由题中条件,求出等比数列的公比,再由求和公式,即可求出结果.【详解】设等比数列的公比为,因为,则,即,解得,所以,则,所以.故选:A.10. 下列三个关于函数的命题:只需将函数的图象向右平移个单位即可得到的图象;函数的图象关于对称;函数在上单调递增其中,真命题的个数为( )A. 3B. 2C. 1D. 0【答案】C【解析】【分析】先对函数进行化简,得到,对于运用三角函数图像平移进行判断;对于计算出函数的对称中心进行判断;对于计算出函数的单调增区间进行判断.【详解】因为对于,将函数的
6、图像向右平移个单位可得函数的图像,得不到,故错误;对于,令,解得,故无论取何整数,函数的图像不会关于点对称,故错误;对于,当,即时函数递增,当时,的一个递增区间为,故正确.只有1个命题正确.故选:C【点睛】思路点睛:解答此类题目需要熟练掌握正弦型函数的单调性、对称性,以及三角函数的图像平移,在计算单调区间和对称中心时要能够通过整体代入计算求出结果,如等.11. 如图,为测塔高,在塔底所在的水平面内取一点C,测得塔顶的仰角为,由C向塔前进30米后到点D,测得塔顶的仰角为,再由D向塔前进米后到点E,测得塔顶的仰角为,则塔高为( )米A. 10B. C. 15D. 【答案】C【解析】【分析】由,得是
7、等腰三角形,且可求得,在直角中易得塔高详解】由题知等腰的,中,故选:C12. 设分别是椭圆的左,右焦点,A是C上一点且与x轴垂直,直线与C的另一个交点为B,若,则C的离心率为( )A. B. C. D. 【答案】D【解析】【分析】由已知条件可知与轴垂直,计算出的长度,再结合,可得线段的长度比值,过点作与轴垂直,计算出点坐标,代入椭圆方程可以求出离心率.【详解】由已知条件可知与轴垂直,则点,代入椭圆方程,解得,不妨取,又因为,则,过点作与轴垂直,如图所示,则与相似,故点坐标为,又因为点在椭圆上,将其点坐标代入椭圆方程得,即有,故,所以,离心率.故选:D【点睛】关键点点睛:解答本题的关键在于求出点
8、坐标,将其坐标代入椭圆方程中进行计算,即可化简求出离心率的值.第卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分13. 已知实数满足约束条件,则的最大值为_【答案】【解析】【分析】画出可行域,平移基准直线到可行域边界位置,由此求得目标函数的最大值.【详解】画出可行域如下图所示,由图可知,平移基准直线到可行域边界点的位置,此时取得最大值为.故答案为:.【点睛】本小题主要考查线性规划求目标函数的最大值,考查数形结合的数学思想方法.属于较易题.14. 已知双曲线的焦距为8,则实数的值为_.【答案】11【解析】【分析】由题可得,即可求出.【详解】由题可得,则由得,解得.故答案为
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-492306.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
