2022八年级数学上册 第十三章 全等三角形13.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022八年级数学上册 第十三章 全等三角形13 2022 八年 级数 上册 第十三 全等 三角形 13
- 资源描述:
-
1、13.3全等三角形的判定(3)教学目标【知识与能力】1.掌握“角边角”及“角角边”的内容.2.能初步应用“角边角”及“角角边”判定两个三角形全等.【过程与方法】使学生经历探索三角形全等的过程,体验用操作、归纳得出数学结论的过程.【情感态度价值观】通过探究三角形全等的活动,培养学生敢于面对困难、克服困难的能力.教学重难点【教学重点】“角边角”及“角角边”的内容.【教学难点】 分析问题,寻找判定两个三角形全等的条件.课前准备多媒体课件教学过程一、新课导入:导入一:教师讲解:前面,我们已经知道,当两个三角形的两条边及其夹角分别对应相等时,两个三角形一定全等,而当两个三角形的两条边及其中一边的对角分别
2、对应相等时,两个三角形不一定全等.这节课,我们将讨论以下情况:如图所示,一种情况是已知两个角及这两角的夹边;另一种情况是已知两个角及其中一角的对边.设计意图让学生明确本节课要研究的主要内容,并明确三角形中边与角的位置关系,理解“两角夹一边”和“两角一对边”的含义.导入二:1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?(三个角、三个边、两边一角、两角一边)(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.师:在三角形中,已知三个元素的四种情况中,我们研究了两种,我们接着探究已知两角一边是否可以判定两三角形全等.导入三:【课件1】如图所示,小明不小心把一块三角形的玻
3、璃打碎成四块,现在要去玻璃店配一块完全一样的玻璃,那么最省事的办法是什么?你能帮小明出出主意吗? 要想最省事,就要带块数最少且要满足它能够确定该三角形的形状和大小,这就是本节课要学到的判定三角形全等的知识.学完本节,你就会知道为什么应该带第2块去.设计意图激趣设疑,让学生产生学习的兴趣,积极地投入到本节课的学习之中.二、新知构建:过渡语在两角一边中有两种情况,下面我们就来研究这两种情况,即两角一夹边,两角一对边.活动一:“角边角”基本事实和“角角边”定理的探究思路一做一做:【课件2】三角形的两个内角分别是60和80,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下来.
4、同伴比较,观察它们是不是全等,你能得出什么结论?【学生活动】自己动手操作,然后与同伴交流,得出结论.【教师活动】检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形放在一起,发现完全重合,这说明这些三角形全等.提炼结论:两角和它们的夹边对应相等的两个三角形全等(可以简记为“角边角”或“ASA”).师:我们刚才作的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个ABC,使A=A,B=B,AB=AB呢?生:能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.生:(1)先用量角器量出A与B的度数,再用直尺量出AB边的长;(2)画线段AB,使AB=AB;(
5、3)分别以A,B为顶点,AB为一边在同侧作DAB,EBA,使DAB=CAB,EBA=CBA;(4)射线AD与BE交于一点,记为C,即可得到ABC.将ABC与ABC放到一起,发现两三角形全等.教师出示图形:于是我们发现规律:两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).这又是一个判定两个三角形全等的方法.知识拓展“ASA”中的“S”必须是两个“A”所夹的边.书写格式:在ABC和ABC中,A=A,AB=AB,B=B,所以ABCABC.出示探究问题:【课件3】如图所示,在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用角边角条件证明你的结论吗?
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
广西壮族自治区梧州市2023年七年级下学期期中数学试卷【及参考答案】.pptx
