2021年高考数学 考点41 空间点、直线、平面之间的位置关系必刷题 理(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年高考数学 考点41 空间点、直线、平面之间的位置关系必刷题 理含解析 2021 年高 数学 考点 41 空间 直线 平面 之间 位置 关系 必刷题 解析
- 资源描述:
-
1、考点41 空间点、直线、平面之间的位置关系1下列四个命题:(1)存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与该平面平行;(4)过直线外一点可作无数个平面与该直线平行.其中正确的命题的个数是A B C D 【答案】C【解析】(1)将一个平面内的两条相交直线平移到平面外,且平移后不相交,则这两条直线异面且与该平面平行,故正确;(2)当过该点的平面过其中一条直线时,这个平面与两条异面直线都平行是错误的,故不正确;(3)显然正确;(4)显然正确.故答案为C.2设直线m、n和平面、,下列四个命题中,正确的是( )A 若m,n,
2、则mnB 若m,n,m,n,则C 若,m,则mD 若,m,m,则m【答案】D3如图,在中, ,是斜边的中点,将沿直线翻折,若在翻折过程中存在某个位置,使得,则的取值范围是( )A B C D 【答案】DCBD=BCD=B1CD=30,A=60,BC=ACtan60,此时 , 综上,x的取值范围为.故选:D4在正方体中,直线与平面所成角的正弦值为A B C D 【答案】D5设,是不同的直线,是不同的平面,下列命题中正确的是( )A 若,则 B 若,则C 若,则 D 若,则【答案】C6为顶点的正四面体的底面积为,为的中点,则与所成角的余弦值为A B C D 【答案】C【解析】取SA的中点E,连接D
3、E,则AC|DE,所以DE和BD所成的角或补角就是与所成角,设正四面体的边长为a,则.所以与所成角的余弦值为.故答案为:C7已知直线m,n和平面,满足mn,m,则A n B n C n或n D n或n【答案】D【解析】根据条件,画出示意图反例如下图可分别排除A、B、C 所以选D8设,是两条不同的直线, ,是三个不同的平面有下列四个命题:若,则; 若,则; 若,则; 若,则其中错误命题的序号是A B C D 【答案】B故答案为:B9如图,在梯形ABCD中,平面平面ABCD,四边形ACFE是矩形,点M在线段EF上()求证:平面ACFE;()当EM为何值时,平面?证明你的结论;()求二面角的平面角的
4、余弦值【答案】()见解析()()10如图所示,四棱锥中,底面,为的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)见解析; (2).设为平面的法向量,则,即设,则,即平面的一个法向量为,所以所以直线与平面所成角的正弦值为.11如图,四棱锥中,底面为菱形,为等边三角形(1)求证:(2)若,求二面角的余弦值【答案】(1)见解析(2)0因为,所以面,如图建立空间直角坐标系,12如图,在长方形ABCD中,为线段AB的三等分点,G、H为线段DC的三等分点将长方形ABCD卷成以AD为母线的圆柱W的半个侧面,AB、CD分别为圆柱W上、下底面的直径(1)证明:平面平面BCHF;(2)求
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-494062.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
