分享
分享赚钱 收藏 举报 版权申诉 / 10

类型2021年高考数学 考点55 分类加法计数原理与分步乘法计数原理必刷题 理(含解析).doc

  • 上传人:a****
  • 文档编号:494094
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:10
  • 大小:1.03MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021年高考数学 考点55 分类加法计数原理与分步乘法计数原理必刷题 理含解析 2021 年高 数学 考点 55 分类 加法 计数 原理 分步 乘法 必刷题 解析
    资源描述:

    1、考点55 分类加法计数原理与分步乘法计数原理1将18个参加青少年科技创新大赛的名额分配给3个学校,要求每校至少有一个名额且各校分配的名额互不相等,则不同的分配方法种数为()A 96 B 114 C 128 D 136【答案】B【解析】不同的名额分配方法为(1,2,15),(1,3,14),,(1,8,9);(2,3,13),(2,4,12),,(2,7,9);,(5,6,7),共种方法,再对应分配给学校有,选B.2数列共有12项,其中,且,则满足这种条件的不同数列的个数为( )A 168 B 84 C 76 D 152【答案】B 3已知集合M1,2,3,N4,5,6,7,从两个集合中各选一个数

    2、作为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内不同点的个数为()A 18个 B 10个 C 16个 D 14个【答案】B【解析】第三、四象限内点的纵坐标为负值,横坐标无限制分两种情况讨论,第一种:取中的点作横坐标,取中的点作纵坐标,共有种第二种:取中的点作横坐标,取中的点作纵坐标,共有种综上所述共有种故选 4学校突然停电了,寝室里面漆黑一片,有3个同学的校服(同一型号)都混乱地丢在了一个人的床上,则他们中至少有一人摸到自己的校服的概率为( )A B C D 【答案】A 5任取集合中三个不同数且满足则选取这样的三个数的方法种数共有( )A 27 B 30 C 35 D 48【答案】

    3、C【解析】第一类,的值有5种情况则只有1种情况,共有种情况,第二类, 的值有4种情况则有2种情况,共有种情况,第三类,的值有3种情况则有3种情况,共有种情况,第四类,的值有2种情况则有4种情况,共有种情况,第五类,的值有1种情况则有5种情况,共有种情况,则选取这样的三个数方法种数共有,故选C.6对33000分解质因数得,则的正偶数因数的个数是( )A 48 B 72 C 64 D 96【答案】A 7集合,从集合中各取一个数,能组成( )个没有重复数字的两位数?A 52 B 58 C 64 D 70【答案】B【解析】故选:B8如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有

    4、4种不同的颜色可供选择,则不同的涂色方法种数有A 24 B 48 C 96 D 120【答案】C 9中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有( )A 种 B 种 C 种 D 种【答案】A【解析】当“数”排在第一节时有排法,当“数”排在第二节时有种排法,当“数”排在第三节时,当“射”和“御”两门

    5、课程排在第一、二节时有种排法,当“射”和“御”两门课程排在后三节的时候有种排法,所以满足条件的共有种排法,故选A.10将数字“”重新排列后得到不同的偶数个数为( )A B C D 【答案】C 11某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有( )A 6种 B 12种 C 18种 D 24种【答案】B【解析】方法数有种.故选B. 12某山区希望小学为丰富学生的伙食,教师们在校园附近开辟了如图所示的四块菜地,分别种植西红柿、黄瓜、茄子三种产量大的蔬菜,若这三种蔬菜种植齐全,同一块地只能种植一种蔬菜,且相邻的两块地不能种植相同的蔬菜,则不同

    6、的种植方式共有( )A 种 B 种 C 种 D 种【答案】B【解析】若种植2块西红柿,则他们在13,14或24位,其中两位是黄瓜和茄子,所以共有种种植方式;若种植2块黄瓜或2块茄子也是3种种植方式,所以一共种.故选B.13福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( )A 90种 B 180种 C 270种 D 360种【答案】B 14某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有( )A AA种

    7、B A54种 C C54种 D CA种【答案】C【解析】因为有且只有两个年级选择甲博物馆,所以参观甲博物馆的年级有种情况,其余年级均有种选择,所以共有种情况,根据分步计数乘法原理可得共有种情况,故选C. 15把2支相同的晨光签字笔,3支相同英雄钢笔全部分给4名优秀学生,每名学生至少1支,则不同的分法有( )A 24种 B 28种 C 32种 D 36种【答案】B【解析】第一类,有一个人分到一支钢笔和一支签字笔,这中情况下的分法有:先将一支钢笔和一支签字笔分到一个人手上,有种分法,将剩余的支钢笔, 支签字笔分给剩余个同学,有种分法,那共有种;第二类,有一个人分到两支签字笔,这种情况下的分法有:先

    8、将两支签字笔分到一个人手上,有种情况,将剩余的支钢笔分给剩余个人,只有1种分法,那共有: 种;第三类,有一个人分到两支钢笔,这种情况的分法有:先将两支钢笔分到一个人手上,有种情况,再将剩余的两支签字笔和一支钢笔分给剩余的个人,有种分法,那共有: 种;综上所述:总共有种分法.故选B.16本周日有5所不同的高校来我校作招生宣传,学校要求每位同学可以从中任选1所或2所去咨询了解,甲、乙、丙三位同学的选择没有一所是相同的,则不同的选法共有( )A 330种 B 420种 C 510种 D 600种【答案】A 173个单位从4名大学毕业生中选聘工作人员,若每个单位至少选聘1人(4名大学毕业生不一定都能选

    9、聘上),则不同的选聘方法种数为( )A 60 B 36 C 24 D 42【答案】A【解析】当4名大学毕业都被选聘上,则有种不同的选聘方法,当4名大学毕业生有3位被选聘上,则有种不同的选聘方法,由分类加法计数原理,得不同的选聘方法种数为.故选A.18从这个数字中选个数字组成没有重复数字的三位数,则该三位数能被整除的概率为( )A B C D 【答案】D【解析】从这个数字中选个数字组成没有重复数字的三位数: (个),三位数是的倍数,需要满足各个数位上的数之和是的倍数,有两种情况和;由 组成没有重复数字的三位数共有个,由组成没有重复数字的三位数共有 个,所以一共有: 个,这个三位数被整除的概率是,

    10、故选D. 19现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有不同分法的种数为A 12 B 24 C 48 D 60【答案】C【解析】先从四组两张连号票比如(1,2)(2,3)(3,4)(4,5)中取出一组,分给甲乙两人,共有种,其余的三张票随意分给剩余的三人,共有种方法,根据分步乘法原理可知,共有种,故选C. 20在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科学科,3门文科学科)中选择3门学科参加等级考试,小丁同学理科成绩较好,决定至少选择两门理科学科,那么小丁同学的选科方案有_种【答案】10【解析】选择两门理科学

    11、科,一门文科学科,有种;选择三门理科学科,有1种,故共有10种故答案为:1021将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为_【答案】 225个大学生分配到三个不同的村庄当村官,每个村庄至少有一名大学生,其中甲村庄恰有一名大学生的分法种数为_【答案】70【解析】甲村庄恰有一名大学生,有5种分法,另外四名大学生分为两组,共有种,再分配到两个村庄,有种不同的分法,所以每个村庄至少有一名大学生,其中甲村庄恰有一名大学生的分法种数为,故答案为. 23用五种不同的颜色给三棱柱六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色方法有_种.

    12、(用数字作答)【答案】1920. 24有五名同学站成一排照毕业纪念照,其中甲不能和乙站在一起,并且乙、丙两位同学要站在一起,则不同的站法种数有_(用数字作答)【答案】36【解析】根据题意,先排除甲的其余4人,因为乙、丙两位同学要站在一起,故捆绑再与其余3人进行全排,共有种排法,再将甲插空,由于甲不能和乙站在一起,故甲有3种插法,所以根据乘法原理,不同的站法有种排法.故答案为.25某学校要安排位数学老师、位英语老师和位化学老师分别担任高三年级中个不同班级的班主任,每个班级安排个班主任由于某种原因,数学老师不担任班的班主任,英语老师不担任班的班主任,化学老师不担班和班的班主任, 则共有_种不同的安排方法(用数字作答)【答案】32

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021年高考数学 考点55 分类加法计数原理与分步乘法计数原理必刷题 理(含解析).doc
    链接地址:https://www.ketangku.com/wenku/file-494094.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1