分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2021年高考数学 考点56 变量间的相关关系、统计案例必刷题 文(含解析).doc

  • 上传人:a****
  • 文档编号:494097
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:29
  • 大小:3.51MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021年高考数学 考点56 变量间的相关关系、统计案例必刷题 文含解析 2021 年高 数学 考点 56 变量 相关 关系 统计 案例 必刷题 解析
    资源描述:

    1、考点56 变量间的相关关系、统计案例1某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程x中的为9.4,据此模型预报广告费用为6万元时销售额为A 62.6万元 B 63.6万元C 64.7万元 D 65.5万元【答案】D 2已知回归直线的斜率的估计值是123,样本点的中心为(4,5),则回归直线的方程是A B C D 【答案】C【解析】由条件知,设回归直线方程为,则.回归直线的方程是故选:C3已知变量与负相关,且由观测数据算得样本平均数,则由该观测的数据算得的线性回归方程可能是A B C D 【答案】C 4下列表格所示的

    2、五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为,后因某未知原因使第5组数据的值模糊不清,此位置数据记为(如下表所示),则利用回归方程可求得实数的值为( )1961972002032041367A 8.3 B 8.2 C 8.1 D 8【答案】D【解析】由题意可得:,回归方程过样本中心点,则:,解得:.本题选择D选项. 5全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某部门在该市年发布的全民健身指数中,其中的“运动参与”的评分值(满分分)进行了统计,制成如图所示的散点图:(1)根据散点图,建立关于的回归方程;(2)根据(1)中的回

    3、归方程,预测该市年和 年“运动参与”评分值.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.【答案】(1)回归方程是.(2)年、年该市“运动参与”评分值分别. 6下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型根据2000年至2016年的数据(时间变量的值依次为)建立模型:;根据2010年至2016年的数据(时间变量的值依次为)建立模型:(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由【答案】

    4、(1)见解析;(2)见解析 7一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:(1)在给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数与进店人数是否线性相关?(给出判断即可,不必说明理由)(2)建立关于的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数)(参考数据:,)【答案】(1)见解析;(2)见解析. 8炼钢是一个氧化降碳的过程,由于钢水含碳量的多少直接影响冶炼时间的长短,因此必须掌握钢水含碳量和冶炼时间的关系.现已测得炉料熔化完毕时钢水的含碳量与冶炼时间(从炉料熔化完毕到出钢的时间)的一组数据,如下表所示:12345678910

    5、10418019017714713415019120412110020021018515513517020523512510400360003990032745227851809025500391554794015125(1)据统计表明,与之间具有线性相关关系,请用相关系数加以说明( ,则认为与有较强的线性相关关系,否则认为没有较强的线性相关关系,精确到0.001);(2)建立关于的回归方程(回归系数的结果精确到0.01);(3)根据(2)中的结论,预测钢水含碳量为160个0.01%的冶炼时间.参考公式:回归方程中斜率和截距的最小二乘估计分别为,相关系数参考数据:,.【答案】(1)可以认为与有

    6、较强的线性相关关系;(2);(3)172min 【解析】(1)由题得可以认为与有较强的线性相关关系. 9近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图(1)根据散点图判断,在推广期内,(c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);(2)

    7、根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.【答案】(1)(2) 10保险公司统计的资料表明:居民住宅区到最近消防站的距离x(单位:千米)和火灾所造成的损失数额y(单位:千元)有如下的统计资料:距消防站距离x(千米)1.82.63.14.35.56.1火灾损失费用y(千元)17.819.627.531.336.043.2如果统计资料表明y与x有线性相关关系,试求:()求相关系数(精确到0.01);()求线性回归方程(精确到0.01);(III)若发生火灾

    8、的某居民区与最近的消防站相距10.0千米,评估一下火灾的损失(精确到0.01).参考数据:,参考公式:相关系数 ,回归方程 中斜率和截距的最小二乘估计公式分别为:,【答案】() ()(+7.32或7.33均给分)(III)(63.52或63.53均给分) 11二手车经销商小王对其所经营的型号二手汽车的使用年数(单位年)与销售价格(单位:万元辆)进行整理,得到如下数据:下面是关于的折线图.(1)由折线图可以看出,可以用线性回归模型拟合与的关系,求关于的回归方程,并预测当某辆型号二手车使用年数为9年时售价约为多少?(小数点后保留两位有效数字)(2)基于成本的考虑,该型号二手车的售价不得低于7118

    9、元,请根据(1)求出的回归方程预測在收购该型号二手车时车辆的使用年数不得超过多少年?参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,.【答案】(1)万元;(2)11.【解析】(1)由题意,计算, 12某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。经济学家调查发现,当地人均可支配年收入较上一年每增加,一般困难的学

    10、生中有会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有转为一般困难,特别困难的学生中有转为很困难。现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份取13时代表2013年, 与(万元)近似满足关系式,其中为常数。(2013年至2019年该市中学生人数大致保持不变) 其中, ()估计该市2018年人均可支配年收入;()求该市2018年的“专项教育基金”的财政预算大约为多少?附:对于一组具有线性相关关系的数据,其回归直线方程 的斜率和截距的最小二乘估计分别为【答案】()2.8(万);()1624万.一般困难、很

    11、困难、特别困难的中学生依次有7000人、4200人、2800人, 2018年人均可支配收入比2017年增长所以2018年该市特别困难的中学生有2800(1-10%)=2520人,很困难的学生有4200(1-20%)+280010%=3640人一般困难的学生有7000(1-30%)+420020%=5740人.所以2018年的“专项教育基金”的财政预算大约为57401000+36401500+25202000=1624万. 13某地电影院为了了解当地影迷对快要上映的一部电影的票价的看法,进行了一次调研,得到了票价x(单位:元)与渴望观影人数y(单位:万人)的结果如下表:x(单位:元)304050

    12、60y(单位:万人)4.5432.5(1)若y与x具有较强的相关关系,试分析y与x之间是正相关还是负相关;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)根据(2)中求出的线性回归方程,预测票价定为多少元时,能获得最大票房收入参考公式:,.【答案】(1)负相关;(2);(3)票价定为47.5元时,能获得最大票房收入 14近些年来,随着空气污染加剧,全国各地雾霾天气增多环境空气质量指数(AQI)技术规定(试行)将空气质量指数分为六级:其中,中度污染(四级),指数为151200;重度污染(五级),指数为201300;严重污染(六级),指数大于300 某气象站观测点记录了某

    13、市五月1号4号连续4天里,AQI指数M与当天的空气水平可见度(单位cm)的情况如下表1:M9007003001000.53.56.59.5该市五月AQI指数频数分布如下表2:M频数361263(1)设,根据表1的数据,求出关于的回归直线方程,并利用所求的回归直线方程分析该市五月1号4号连续4天空气水平可见度的变化情况(2)小张开了一家洗车店,生意的好坏受到空气质量影响很大. 经统计,当M不高于200时,洗车店平均每天亏损约2000元;当M在200至400时,洗车店平均每天收入约4000元;当M大于400时,洗车店平均每天收入约7000元. 将频率看作概率,求小张的洗车店五月某一天能够获利的概率

    14、,并根据表2估计五月份平均每天的收入.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:【答案】(1)见解析;(2)5500元.【解析】(1)由所给数据计算得:, 15某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:尺寸384858687888质量16.818.820.722.42425.5质量与尺寸的比0.4420.3920.3570.3290.3080.290()现从抽取的6件合格产品中再任选3件,求恰好取到2件优等品的概率;()根

    15、据测得数据作了初步处理,得相关统计量的值如下表: 75.324.618.3101.4(i)根据所给统计量,求关于的回归方程;(ii)已知优等品的收益(单位:千元)与的关系,则当优等品的尺寸为为何值时,收益的预报值最大?(精确到0.1)附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:,.【答案】() ()(1) (2) (2)由(1)得:令 当时取最大 时,收益预报值最大.16一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转速度而变化,下表为抽样试验的结果:转速x(转/秒)1614128每小时生产有缺点的

    16、零件数y(件)11985(1)利用散点图或相关系数r的大小判断变量y对x是否线性相关?为什么?(2)如果y与x有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(最后结果精确到0.001参考数据:,)回归分析有关公式:r=,【答案】(1)y与x有线性性相关关系(2)(3)(2)解: , 回归直线方程为:(3),解得17下表是某学生在4月份开始进人冲刺复习至高考前的5次大型联考数学成绩(分);(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;若在4月份开始进入冲刺复习前

    17、,该生的数学分数最好为116分,并以此作为初始分数,利用上述回归方程预测高考的数学成绩,并以预测高考成绩作为最终成绩,求该生4月份后复习提高率.(复习提高率=,分数取整数)附:回归直线的斜率和截距的最小二乘估计公式分别为,.【答案】(1)(2) 【解析】 (1)散点图如图: 18高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率的关系,对某校高三某班学生进行了关注统计,得到如下数据:123420305060(1)求关于的线性回归方程,并预测答题正确率是100的强化训练次数;(2)若用表示统计数据的“强化均值”(精确到整数),若“强化均值”的标准差在区间内,则强化

    18、训练有效,请问这个班的强化训练是否有效?附:回归直线的斜率和截距的最小二乘法估计公式分别为:, ,样本数据的标准差为:.【答案】(1);(2)见解析. 19为了响应全民健身,加大国际体育文化的交流,兰州市从2011年开始举办“兰州国际马拉松赛”,为了了解市民健身情况,某课题组跟踪了兰州某跑吧群在各届全程马拉松比赛中群友的平均成绩(单位:小时),具体如下:(1)求关于的线性回归方程;(2)利用(1)的回归方程,分析2011年到2015年该跑吧群的成绩变化情况,反映市民健身的效果,并预测2016年该跑吧群的比赛平均成绩附:回归直线的斜率和截距的最小二乘法估计公式分别为:,【答案】(1);(2)答案

    19、见解析. 20某城市随机抽取一年(365天)内100天的空气质量指数的监测数据,结果统计如下:记某企业每天由空气污染造成的经济损失(单位:元),空气质量指数为.当时,企业没有造成经济损失;当对企业造成经济损失成直线模型(当时造成的经济损失为,当时,造成的经济损失;当时造成的经济损失为2000元;(1)试写出的表达式:(2)在本年内随机抽取一天,试估计该天经济损失超过350元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有12天为重度污染,完成下面列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?【答案】(1);(2)0.38;(3)答案见解析. 所以有的把握认为该市本年

    20、空气重度污染与供暖有关.21“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?【答案】(1);(2)答案见解析.【解析】(1)由题知,40人中该日走路步数超过5000步的有35人,频率为,所以估计他的所有微信

    21、好友中每日走路步数超过5000步的概率为;(2),故没有95%以上的把握认为二者有关.22为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名小学六年级学生进行了问卷调查,并得到如下列联表平均每天喝以上为“常喝”,体重超过为“肥胖”常喝不常喝合计肥胖2不肥胖18合计30已知在全部人中随机抽取人,抽到肥胖的学生的概率为(1)请将上面的列联表补充完整;(2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由;(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个有关健康饮食的电视节目,求恰好抽到一名男生和一名女生的概率参考数据:【答案】(1)见解析;

    22、(2)见解析;(3)【解析】(1)设常喝碳酸饮料的肥胖学生共名,则,解得常喝碳酸饮料且肥胖的学生有6名列联表如下:常喝不常喝合计 23为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为“常喝”,体重超过为“肥胖”.常喝不常喝合计肥胖2不肥胖18合计30已知在全部人中随机抽取人,抽到肥胖的学生的概率为.(1)请将上面的列联表补充完整(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个有关健康饮食的电视节目,求恰好抽到

    23、一名男生和一名女生的概率.参考数据:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828【答案】(1)见解析(2)见解析(3) 24春节期间,某销售公司每天销售某种取暖商品的销售额(单位:万元)与当天的平均气温(单位:)有关现收集了春节期间这个销售公司4天的与的数据列于下表:平均气温()销售额(万元)20232730根据以上数据,求得与之间的线性回归方程的系数,则_【答案】 25为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取名学生,得到如下列联表:理科文科男1310女720已知,.根据表中数据,得到.则认为选修文科与性别有关系出错的可能性为_.【答案】5%【解析】由独立性检验的结论,由于观测值,故在犯错概率不超过0.05的前提下认为选修文科与性别有关系,则出错的可能性为.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021年高考数学 考点56 变量间的相关关系、统计案例必刷题 文(含解析).doc
    链接地址:https://www.ketangku.com/wenku/file-494097.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1