2021年高考数学三轮冲刺训练 圆锥曲线中的综合性问题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年高考数学三轮冲刺训练 圆锥曲线中的综合性问题含解析 2021 年高 数学 三轮 冲刺 训练 圆锥曲线 中的 综合性 问题 解析
- 资源描述:
-
1、圆锥曲线中的综合性问题考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、抛物线的方程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛物线的位置关系问题;命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置关系问题,综合性较强,往往与向量(共线
2、、垂直、数量积)结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等.1、直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程AxByC0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)0,消去y(或x)得到一个关于变量x(或y)的一元方程例:由消去y,得ax2bxc0.(1)当a0时,设一元二次方程ax2bxc0的判别式为,则:0直线与圆锥曲线C相交;0直线与圆锥曲线C相切;1)的左、右顶点,G为E的上顶点,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D(1)求E的方程;(2)证明:直线CD过定点.【解析】(1)由题设得A(a,0
3、),B(a,0),G(0,1).则,=(a,1).由=8得a21=8,即a=3.所以E的方程为+y2=1(2)设C(x1,y1),D(x2,y2),P(6,t).若t0,设直线CD的方程为x=my+n,由题意可知3n0得t2,当且仅当k=1时取等号因为在2,+)单调递减,所以当t=2,即k=1时,S取得最大值,最大值为因此,PQG面积的最大值为19、已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.【解析】(1)设,则.由于,所以切线DA的斜率为
4、,故 .整理得 设,同理可得.故直线AB的方程为.所以直线AB过定点.(2)由(1)得直线AB的方程为.由,可得.于是,.设分别为点D,E到直线AB的距离,则.因此,四边形ADBE的面积.设M为线段AB的中点,则.由于,而,与向量平行,所以.解得t=0或.当=0时,S=3;当时,.因此,四边形ADBE的面积为3或.20、已知抛物线C:x2=2py经过点(2,1)(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=1分别交直线OM,ON于点A和点B求证:以AB为直径的圆经过y轴上的两个定点【解析】(1)由抛物线经过点,得.所以
5、抛物线的方程为,其准线方程为.(2)抛物线的焦点为.设直线的方程为.由得.设,则.直线的方程为.令,得点A的横坐标.同理得点B的横坐标.设点,则,.令,即,则或.综上,以AB为直径的圆经过y轴上的定点和.21、设椭圆的左焦点为,上顶点为已知椭圆的短轴长为4,离心率为(1)求椭圆的方程;(2)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上若(为原点),且,求直线的斜率【解析】(1)设椭圆的半焦距为,依题意,又,可得,所以,椭圆的方程为(2)由题意,设设直线的斜率为,又,则直线的方程为,与椭圆方程联立整理得,可得,代入得,进而直线的斜率在中,令,得由题意得,所以直线的斜
6、率为由,得,化简得,从而所以,直线的斜率为或22、如图,已知点为抛物线的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧记的面积分别为(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标【解析】(1)由题意得,即p=2.所以,抛物线的准线方程为x=1.(2)设,重心.令,则.由于直线AB过F,故直线AB方程为,代入,得,故,即,所以.又由于及重心G在x轴上,故,得.所以,直线AC方程为,得.由于Q在焦点F的右侧,故.从而.令,则m0,.当时,取得最小值,此时G(2,0)一、 单选题1、已知抛物线上一点到准线的距离
7、为,到直线:为,则的最小值为( )A3B4CD【答案】B【解析】因为抛物线上的点到准线的距离等于到焦点的距离所以过焦点作直线的垂线则到直线的距离为的最小值,如图所示:所以故选:B2、已知双曲线的焦点到渐近线的距离等于,则( )ABCD【答案】C【解析】双曲线的焦点坐标为 由,又,可得双曲线的渐近线方程为: 则焦点到渐近线的距离为,由所以 故选:C3、已知抛物线的焦点为F,准线为l,P为该抛物线上一点,A为垂足.若直线AF的斜率为,则的面积为( )ABC8D【答案】B【解析】由题意,抛物线的焦点为,设抛物线的准线与轴交点为,则, 又直线AF的斜率为,所以,因此,;由抛物线的定义可得:,所以是边长
8、为的等边三角形,所以的面积为.故选:B.4、已知点为双曲线右支上一点,分别为的左,右焦点,直线与的一条渐近线垂直,垂足为,若,则该双曲线的离心率为( )ABCD【答案】C【解析】取的中点,连接 ,由条件可知,是的中点, 又, ,根据双曲线的定义可知,直线的方程是: ,即 ,原点到直线的距离,中,整理为: ,即 ,解得: ,或(舍)故选:C5、已知双曲线的左、右焦点分别为为双曲线左支上位于第二象限的一点,且满足,若直线与圆相切,则双曲线的离心率为( )ABCD【答案】C【解析】设直线与圆相切,切点为,可得,从而可得,再由即可求解.【详解】设直线与圆相切,切点为,连接,则,因为,所以,所以, 且,
9、所以,由双曲线的定义可得,又,则,整理可得,所以,解得,解得.故选:C6、在平面直角坐标系中,已知圆:,若直线:上有且只有一个点满足:过点作圆C的两条切线PM,PN,切点分别为M,N,且使得四边形PMCN为正方形,则正实数m的值为( )A1BC3D7【答案】C【解析】由可知圆心,半径为,因为四边形PMCN为正方形,且边长为圆的半径,所以,所以直线:上有且只有一个点,使得,即,所以圆心到直线的距离为,所以,解得或(舍).故选:C7、已知、分别是双曲线的左右焦点,点在双曲线右支上且不与顶点重合,过作的角平分线的垂线,垂足为,为坐标原点,若,则该双曲线的离心率为( )ABC2D【答案】B【解析】延长
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
