2021年高考数学三轮冲刺训练 基本初等函数及其性质(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年高考数学三轮冲刺训练 基本初等函数及其性质含解析 2021 年高 数学 三轮 冲刺 训练 基本 初等 函数 及其 性质 解析
- 资源描述:
-
1、基本初等函数及其性质1、.关于函数性质的考查:以考查能力为主,往往以常见函数(二次函数、指数函数、对数函数)为基本考察对象,以绝对值或分段函数的呈现方式,与不等式相结合,考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查;2、关于函数图象的考查:(1)函数图象的辨识与变换;(2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力;1、函数的性质(1)利用定义判断函数奇偶性的步骤:(2)在判断奇偶性的运算中,可以转化为判
2、断奇偶性的等价等量关系式(f(x)f(x)0(奇函数)或f(x)f(x)0(偶函数)是否成立.(3)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(3)函数周期性的判定:可得为周期函数,其周期的周期分析:直接从等式入手无法得周期性,考虑等间距再构造一个等式:所以有:,即周期注:遇到此类问题,如果一个等式难以推断周期,那么可考虑等间距再列一个等式,进而通过两个等式看能否得出周期的周期分析:(为常数)的周期分析:,两式相减可得:(为常数)的周期双对称出周期:若一个函数存在两个对称关系,则是一个周期函数,具体情况如下:(假设) 若的图像
3、关于轴对称,则是周期函数,周期分析:关于轴对称 关于轴对称 的周期为 若的图像关于中心对称,则是周期函数,周期 若的图像关于轴对称,且关于中心对称,则是周期函数,周期二、利用图象变换法作函数的图象(1)平移变换(2)对称变换yf(x)的图象yf(x)的图象;yf(x)的图象yf(x)的图象;yf(x)的图象yf(x)的图象;yax(a0,且a1)的图象ylogax(a0,且a1)的图象.(3)伸缩变换yf(x)yf(ax).yf(x)yAf(x).(4)翻折变换yf(x)的图象y|f(x)|的图象;yf(x)的图象yf(|x|)的图象.常用结论与微点提醒三、记住几个重要结论(1)函数yf(x)
4、与yf(2ax)的图象关于直线xa对称.(2)函数yf(x)与y2bf(2ax)的图象关于点(a,b)中心对称.(3)若函数yf(x)对定义域内任意自变量x满足:f(ax)f(ax),则函数yf(x)的图象关于直线xa对称.2.图象的左右平移仅仅是相对于x而言,如果x的系数不是1,常需把系数提出来,再进行变换.3.图象的上下平移仅仅是相对于y而言的,利用“上减下加”进行.1、 特殊化的方法,特别是对于判断大小的题型,一方面可以运用函数的性质;另一方面可以特殊化,对变量进行赋值,进而确定大小;2、 运用排除法:特别适合与识图辩图的题型,可以通过研究函数的性质、图像的变化趋势以及特殊位置对于函数的
5、值的正负进行排除或者验证。3、合理的运用数形结合法、属性结合是解决与函数图像有关的主要方法,在本节中体现的比较多,要注意正确做出函数的图像。1、设函数,则f(x)A是偶函数,且在单调递增 B是奇函数,且在单调递减C是偶函数,且在单调递增D是奇函数,且在单调递减【答案】D【解析】由得定义域为,关于坐标原点对称,又,为定义域上的奇函数,可排除AC;当时,在上单调递增,在上单调递减,在上单调递增,排除B;当时,在上单调递减,在定义域内单调递增,根据复合函数单调性可知:在上单调递减,D正确.故选:D2、设是定义域为R的偶函数,且在单调递减,则A(log3)()() B(log3)()()C()()(l
6、og3) D()()(log3)【答案】C【解析】是定义域为的偶函数,又在(0,+)上单调递减,即.故选C3、若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是A B C D【答案】D【解析】因为定义在上的奇函数在上单调递减,且,所以在上也是单调递减,且,所以当时,当时,所以由可得:或或.解得或,所以满足的的取值范围是,故选:D4、已知5584,13485设a=log53,b=log85,c=log138,则AabcBbacCbcaDcab,则Aln(ab)0 B3a0 Dab【答案】C【解析】取,满足,但,则A错,排除A;由,知B错,排除B;取,满足,但,则D错,排除
7、D;因为幂函数是增函数,所以,即a3b30,C正确.故选C9、若,则ABCD【答案】B【解析】设,则为增函数,因为,所以,所以.,当时,此时,有当时,此时,有,所以C、D错误.故选:B10、若2x2y0 Bln(yx+1)0 Dln|xy|0,且a1)的图象可能是【答案】D【解析】当时,函数的图象过定点且单调递减,则函数的图象过定点且单调递增,函数的图象过定点且单调递减,D选项符合;当时,函数的图象过定点且单调递增,则函数的图象过定点且单调递减,函数的图象过定点且单调递增,各选项均不符合.综上,选D.15、已知函数若函数恰有4个零点,则的取值范围是A BC D【答案】D【解析】注意到,所以要使
8、恰有4个零点,只需方程恰有3个实根即可,令,即与的图象有个不同交点.因为,当时,此时,如图1,与有个不同交点,不满足题意;当时,如图2,此时与恒有个不同交点,满足题意;当时,如图3,当与相切时,联立方程得,令得,解得(负值舍去),所以.综上,的取值范围为.故选:D 16、已知函数,则不等式的解集是ABCD【答案】D【解析】因为,所以等价于,在同一直角坐标系中作出和的图象如图:两函数图象的交点坐标为,不等式的解为或.所以不等式的解集为:.故选:D17、已知,函数若函数恰有3个零点,则Aa1,b0 Ba0 Ca1,b1,b0 【答案】C【解析】当x0时,yf(x)axbxaxb(1a)xb0,得x
9、,则yf(x)axb最多有一个零点;当x0时,yf(x)axbx3(a+1)x2+axaxbx3(a+1)x2b,当a+10,即a1时,y0,yf(x)axb在0,+)上单调递增,则yf(x)axb最多有一个零点,不合题意;当a+10,即a1时,令y0得x(a+1,+),此时函数单调递增,令y0得x0,a+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数yf(x)axb恰有3个零点函数yf(x)axb在(,0)上有一个零点,在0,+)上有2个零点,如图:0且,解得b0,1a0,b(a+1)3,则a1,b0.故选C18、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成120
10、0份订单的配货,由于订单量大幅增加,导致订单积压为解决困难,许多志愿者踊跃报名参加配货工作已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A10名B18名C24名D32名【答案】B【解析】由题意,第二天新增订单数为,设需要志愿者x名,,故需要志愿者名.故选:B19、Logistic模型是常用数学模型之一,可应用于流行病学领城有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例
11、数当I()=0.95K时,标志着已初步遏制疫情,则约为(ln193)A60 B63C66 D69【答案】C【解析】,所以,则,所以,解得.故选:C20、基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln20.69) A1.2天B1.8天C2.5天 D
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
