黑龙江省虎林高级中学高中数学课件:3.2.2复数代数形式的乘除运算2选修1-2.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 黑龙江省虎林高级中学高中数学课件:3.2.2复数代数形式的乘除运算2 选修1-2 黑龙江省 虎林 高级中学 高中数学 课件 3.2 复数 代数 形式 乘除 运算 选修
- 资源描述:
-
1、3.2复数代数形式的四则运算教学目标 掌握复数的代数形式的加、减运算及其几何意义。掌握复数的代数形式的乘、除运算。教学重点:复数的代数形式的加、减运算及其几何意义;复数的代数形式的乘除运算及共轭复数的概念。教学难点:加、减运算的几何意义;乘除运算。我们引入这样一个数i,把i 叫做虚数单位,并且规定:i21;形如a+bi(a,bR)的数叫做复数.全体复数所形成的集合叫做复数集,一般用字母C表示.复习:实部实部复数的代数形式:通常用字母 z 表示,即虚部虚部其中称为虚数单位。复数集C和实数集R之间有什么关系?讨论?复数a+bi 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等特别地,a
2、+bi=0.a=b=0必要不充分条件问题:a=0是z=a+bi(a、bR)为纯虚数的注意:一般地,两个复数只能说相等或不相等,而不能比较大小.思考:对于任意的两个复数到底能否比较大小?答案:当且仅当两个复数都是实数时,才能比较大小.1.复数加减法的运算法则:(1)运算法则:设复数z1=a+bi,z2=c+di,(2)那么:z1+z2=(a+c)+(b+d)i;(3)z1-z2=(a-c)+(b-d)i.即:两个复数相加(减)就是实部与实部,虚部与虚部分 别相加(减).(2)复数的加法满足交换律、结合律,即对任何z1,z2,z3C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z
3、3).例1.计算解:2.复数的乘法与除法(1)复数乘法的法则复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i2换成-1,并且把实部合并.即:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i.(2)复数乘法的运算定理复数的乘法满足交换律、结合律以及乘法对加法的分配律.即对任何z1,z2,z3有z1z2=z2z1;(z1z2)z3=z1(z2z3);z1(z2+z3)=z1z2+z1z3.例2:计算(3)复数的除法法则先把除式写成分式的形式,再把分子与分母都乘以分母的共轭复数,化简后写成代数形式(分母实数化).即分母实数化例3.计算解:(1)已知求练 习(2)已知求(3)拓展求满足下列条件的复数z:(1)z+(34i)=1;(2)(3+i)z=4+2i
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-494509.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
