2021新高考数学一轮复习(山东专用)学案:10-1 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021新高考数学一轮复习山东专用学案:10-1 分类加法计数原理与分步乘法计数原理 WORD版含解析 2021 新高 数学 一轮 复习 山东 专用 10 分类 加法 计数 原理 分步 乘法 WORD
- 资源描述:
-
1、第一节分类加法计数原理与分步乘法计数原理课标要求考情分析1.理解分类加法计数原理和分步乘法计数原理2会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题1.两个计数原理一般不单独命题,常与排列、组合交汇考查2题型以选择题、填空题为主,要求相对较低.知识点两种计数原理基本形式一般形式区别分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有Nmn种不同的方法完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第n类方案中有mn种不同的方法,那么完成这件事共有Nm1m2m
2、n种不同的方法分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法种数它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任何一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有Nmn种不同的方法完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法1思考辨析判断下列结论正误(在括号内打“”或“”)(1)
3、在分类加法计数原理中,两类不同方案中的方法可以相同()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事()(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成()(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法mi(i1,2,3,n),那么完成这件事共有m1m2m3mn种方法()(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的()2小题热身(1)从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为(B)A6 B5 C3 D2(2)已知某公园有4个门
4、,从一个门进,另一个门出,则不同的走法共有(C)A16种 B13种 C12种 D10种(3)小王有70元钱,现有面值分别为20元和30元的两种IC电话卡若他至少买一张,则不同的买法共有(A)A7种 B8种 C6种 D9种(4)一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有48种(用数字作答)(5)如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有32条不同的路线解析:(1)“完成这件事”即选出1人当主持人,可分选女主持人和男主持人两类进行
5、,分别有3种选法和2种选法,所以共有325种不同的选法(3)要完成的“一件事”是“至少买一张IC电话卡”,分3类完成:买1张IC电话卡、买2张IC电话卡、买3张IC电话卡,而每一类都能独立完成“至少买一张IC电话卡”这件事买1张IC电话卡有2种方法,买2张IC电话卡有3种方法,买3张IC电话卡有2种方法不同的买法共有2327(种)(4)根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法由分步乘法
6、计数原理知,共有64248(种)不同游览线路(5)不同路线共有344532(条). 考点一分类加法计数原理的应用【例1】(1)已知椭圆1,若a2,4,6,8,b1,2,3,4,5,6,7,8,这样的椭圆有_个()A12 B16C28 D32(2)我们把中间位数上的数字最大,而两边依次减小的多位数称为“凸数”如132,341等,那么由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是_【解析】(1)解法1:若焦点在x轴上,则ab,a2时,有1个;a4时,有3个;a6时,有5个;a8时,有7个,共有135716个若焦点在y轴上,则ba,b3时,有1个;b4时,有1个;b5时,有2个;b6时
7、,有2个;b7时,有3个;b8时,有3个共有11223312个故共有161228个解法2:ab时有4种情况,故椭圆个数为48428个(2)根据“凸数”的特点,中间的数字只能是3,4,5,故分三类,第一类,当中间数字为“3”时,此时有2种(132,231);第二类,当中间数字为“4”时,从1,2,3中任取两个放在4的两边,故有6种;第三类,当中间数字为“5”时,从1,2,3,4中任取两个放在5的两边,故有12种;根据分类加法计数原理,得到由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是261220.【答案】(1)C(2)20方法技巧(1)根据问题的特点确定一个合适的分类标准,分类标准
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-495176.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
《高考复习方案》2016高考数学理科(四川专版)二轮复习课件:专题五 函数、基本初等函数Ⅰ的图像与性质 .ppt
