2021新高考数学(江苏专用)一轮复习学案:第四章第7节 解三角形应用举例 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021新高考数学江苏专用一轮复习学案:第四章第7节 解三角形应用举例 WORD版含解析 2021 新高 数学 江苏 专用 一轮 复习 第四 三角形 应用 举例 WORD 解析
- 资源描述:
-
1、第7节解三角形应用举例考试要求能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的问题.知 识 梳 理1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为(如图2).3.方向角正北或正南方向线与目标方向线所成的锐角,如南偏东30,北偏西45等.4.坡度:坡面与水平面所成的二面角的正切值.常用结论与微点提醒1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混.2.解决与平面几何有关的计算问题关键是找清各量之间
2、的关系,从而应用正、余弦定理求解.诊 断 自 测1.判断下列结论的正误. (在括号内打“”或“”)(1)东北方向就是北偏东45的方向.()(2)从A处望B处的仰角为,从B处望A处的俯角为,则,的关系为180.()(3)俯角是铅垂线与视线所成的角,其范围为.()(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.()解析(2);(3)俯角是视线与水平线所构成的角.答案(1)(2)(3)(4)2.(教材必修5P10T2改编)如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,ACB45,CAB105后,就可以计算出A,B两点的距
3、离为()A.50 m B.50 m C.25 m D. m解析在ABC中,由正弦定理得,又CBA1804510530,AB50(m).答案A3.(新教材必修第二册P51练习T2改编)如图所示,D,C,B三点在地面的同一条直线上,DCa,从C,D两点测得A点的仰角分别是60,30,则A点离地面的高度AB_.解析由已知得DAC30,ADC为等腰三角形,ADa,所以RtADB中,ABADa.答案a4.(2020东营月考)如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40,灯塔B在观察站南偏东60,则灯塔A在灯塔B的()A.北偏东10 B.北偏西10C.南偏东80 D.南偏西80解
4、析由条件及图可知,ACBA40,又BCD60,所以CBD30,所以DBA10,因此灯塔A在灯塔B的南偏西80.答案D5.(2019长春期中)如图,一座建筑物AB的高为(3010)m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面上的点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别是15,60,在楼顶A处测得塔顶C的仰角为30,则通信塔CD的高为()A.30 m B.60 m C.30 m D.40 m解析作AECD,垂足为E,则在AMC中,AM20,AMC105,ACM30,AC6020,CD3010ACsin 3060(m).故选B.答案B6.(2019北京调研)如图,在AB
5、C中,已知点D在BC边上,ADAC,sin BAC,AB3,AD3,则BD的长为_.解析因为sinBAC,且ADAC,所以sin,所以cosBAD,在BAD中,由余弦定理,得BD.答案考点一解三角形的实际应用多维探究角度1测量距离问题【例11】 如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得PAB90,PAQPBAPBQ60,则P,Q两点间的距离为_ m.解析由已知,得QABPABPAQ30,又PBAPBQ60,AQB30,ABBQ.又PB为公共边,PABPQB,PQPA.在RtPAB中,APABta
6、n 60900,故PQ900,P,Q两点间的距离为900 m.答案900规律方法距离问题的类型及解法:(1)类型:两点间既不可达也不可视,两点间可视但不可达,两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.角度2测量高度问题【例12】 如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得BCD15,BDC30,CD30,并在点C测得塔顶A的仰角为60,则塔高AB等于()A.5 B.15 C.5 D.15解析在BCD中,CBD1801530135.由正弦定理得,所以BC15.在RtABC中,ABB
7、Ctan ACB1515.答案D规律方法1.在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.2.准确理解题意,分清已知条件与所求,画出示意图.3.运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.角度3测量角度问题【例13】 已知岛A南偏西38方向,距岛A3海里的B处有一艘缉私艇.岛A处的一艘走私船正以10海里/时的速度向岛屿北偏西22方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?解如图,设缉私艇在C处截住走私船,D为岛A正南方向上一点,缉私艇的速度为每小时x海里,则BC0.5x,AC5,依题意,
8、BAC1803822120,由余弦定理可得BC2AB2AC22ABACcos 120,所以BC249,所以BC0.5x7,解得x14.又由正弦定理得sinABC,所以ABC38,又BAD38,所以BCAD,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.规律方法1.测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.2.方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.【训练1】 (1)(角度1)江岸边有一炮台高30 m,江中有两
9、条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45和60,而且两条船与炮台底部连线成30角,则两条船相距_m.(2)(角度2)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600 m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD_m.(3)(角度3)如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角CAD等于()A.30 B.45 C.60 D.75解析(1)如图,设炮台的顶部为A,底部为O,两只小船分别为M,N,则由题意得,OM
10、AOtan 4530(m),ONAOtan 303010(m),在MON中,由余弦定理得,MN10(m).(2)由题意,在ABC中,BAC30,ABC18075105,故ACB45.又AB600 m,故由正弦定理得,解得BC300(m).在RtBCD中,CDBCtan 30300100(m).(3)依题意可得AD20 m,AC30 m,又CD50 m,所以在ACD中,由余弦定理得cosCAD,又0CAD180,所以CAD45,所以从顶端A看建筑物CD的张角为45.答案(1)10(2)100(3)B考点二解三角形与三角函数的综合应用【例2】 (2019北京二模)已知函数f(x)2sin x(co
11、s xsin x)1,xR.(1)求曲线yf(x)的对称中心;(2)在锐角三角形ABC中,a,b,c分别是内角A,B,C的对边,且f2,a3,若bcka恒成立,求正整数k的最小值.解(1)由题意得,f(x)2sin xcos x2sin2x1sin 2xcos 2x2sin.令2xk(kZ),得x(kZ).曲线yf(x)的对称中心为,其中kZ.(2)f2,2sin2,sin1,又A,A,解得A.由正弦定理,得(sin Bsin C)sin(AC)sin C2sin.在锐角三角形ABC中,C,C,sin.于是2,k2,正整数k的最小值为2.规律方法解三角形与三角函数的综合应用主要体现在以下两方面
12、:(1)利用三角恒等变换化简三角函数式进行解三角形;(2)解三角形与三角函数图象和性质的综合应用.【训练2】 (2020湖南炎德、英才大联考)设f(x)sin xsincos.(1)求函数f(x)的最小正周期和单调递减区间;(2)若锐角ABC中,A,B,C的对边分别为a,b,c,且f(A),a2,b,求角C及边c.解(1)f(x)sin xsincossin xsin xcos xcos xsin xsin xcos xsin.f(x)的最小正周期T2.由2kx2k(kZ),解得2kx2k(kZ),故f(x)的单调递减区间是(kZ).(2)在锐角ABC中,f(A),sin,即sin1.由0A,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-495460.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
三年级英语上册Unit7NumbersLesson3HowOldAreYou同步作业pdf无答案鲁科版五四制.pdf
